www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Tangensfunktion
Tangensfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangensfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Mo 28.01.2008
Autor: Smex

Aufgabe
Zeigen Sie, dass die Einschränkung der Tangensfunktion tan(z) = [mm] \bruch{sin z}{cos z} [/mm] auf (- [mm] \bruch{\pi}{2} [/mm] , [mm] \bruch{\pi}{2} [/mm] eine streng monotone, bijektive Abbildung mit Wertebereich (- [mm] \infty, \infty) [/mm] ist.

Hi,

also zunächst mal folgendes: Wenn ich bewiesen habe, dass die Funktion auf dem Intervall streng monoton ist, dann weiß ich doch schon, dass sie bijektiv ist, denn injektiv ist jede streng monotone Funktion und surjektiv ist sie als Funktion f: D nach f(D) und das ist doch hier der Fall, oder?

Und jetzt kommt mein Problem: Wie beweise ich denn, dass die Funktion streng monoton ist, denn ich weiß doch eigentlich gar nichts über die Funktion, außer dass sie als [mm] \bruch{sin z}{cos z} [/mm] definiert ist.

Und das mit dem Wertebereich verstehe ich auch nicht, wie soll die Funktion denn einen Wertebereich von (- [mm] \infty, \infty) [/mm] haben, wenn sie doch auf das gegebene Intervall eingeschränkt ist?

Vielen Dank

Gruß Smex

        
Bezug
Tangensfunktion: Ableitung
Status: (Antwort) fertig Status 
Datum: 17:23 Mo 28.01.2008
Autor: rainerS

Hallo!

> Zeigen Sie, dass die Einschränkung der Tangensfunktion
> tan(z) = [mm]\bruch{sin z}{cos z}[/mm] auf (- [mm]\bruch{\pi}{2}[/mm] ,
> [mm]\bruch{\pi}{2}[/mm] eine streng monotone, bijektive Abbildung
> mit Wertebereich (- [mm]\infty, \infty)[/mm] ist.
>  Hi,
>  
> also zunächst mal folgendes: Wenn ich bewiesen habe, dass
> die Funktion auf dem Intervall streng monoton ist, dann
> weiß ich doch schon, dass sie bijektiv ist, denn injektiv
> ist jede streng monotone Funktion und surjektiv ist sie als
> Funktion f: D nach f(D) und das ist doch hier der Fall,
> oder?
>
> Und jetzt kommt mein Problem: Wie beweise ich denn, dass
> die Funktion streng monoton ist, denn ich weiß doch
> eigentlich gar nichts über die Funktion, außer dass sie als
> [mm]\bruch{sin z}{cos z}[/mm] definiert ist.

Tipp: was gilt für die Ableitung einer streng monotonen, differenzierbaren Funktion?

> Und das mit dem Wertebereich verstehe ich auch nicht, wie
> soll die Funktion denn einen Wertebereich von (- [mm]\infty, \infty)[/mm]
> haben, wenn sie doch auf das gegebene Intervall
> eingeschränkt ist?

Hast du dir die []Tangensfunktion überhaupt mal angeschaut?

Viele Grüße
   Rainer

Bezug
                
Bezug
Tangensfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 Mo 28.01.2008
Autor: Smex

Achso natürlich...
daran hatte ich überhaupt nicht gedacht.

Vielen Dank

Gruß Smex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de