www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Tangente an Kreis
Tangente an Kreis < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente an Kreis: Aufg.1
Status: (Frage) beantwortet Status 
Datum: 16:25 Do 24.11.2005
Autor: Nightwalker12345

Hallo,

ich komme zurzeit bei einer Aufgabe leider nicht weiter...


Aufg.1a)

Bestimme die Gleichungen für die Tangente an den Kreis durch den Punkt S.
Gib auch die zugehörigen Berührungspunkte an.

Also der Punkt S liegt außerhalb des Kreises, und zwei Tangenten schneiden sich am Punkt S, so denke ich das, und beide verlaufen am Kreis vorbei und haben einen Schnittpunkt, natürlich ist der Eine Punkt gleich dem anderen Punkt der Tangente am Kreis.

So:

x²+y²= 25   ; S(-1/7)

dann gebe ich das alles in die Mittelpunktsform:

(xt- xs)² + (yt + ys) ² = 25
(xt+1)² + (yt - 7) ² = 25

so einsetzten:

x² + y² = (x+1)² + (y-7)²
nachher Klammer auflösen, kürzen, ...

0 = 2x - 14y + 50

das glaube ich ist dann die Gerade von Punkt T (der dem Berührungspunkt der Tangente am Kreis) zum anderen Punkt T (dem Berühr. punkt auf der anderen seite des Kreises der anderen Tangente)

was mache ich nun, das darüber war mein Ansatz, hoffe das es so richtig ist,

wäre nett, wenn ihr das beantworten würdet,
bis dann

        
Bezug
Tangente an Kreis: Hinweis
Status: (Antwort) fertig Status 
Datum: 19:28 Do 24.11.2005
Autor: MathePower

Hallo Nightwalker12345,

> Hallo,
>  
> ich komme zurzeit bei einer Aufgabe leider nicht weiter...
>  
>
> Aufg.1a)
>  
> Bestimme die Gleichungen für die Tangente an den Kreis
> durch den Punkt S.
>  Gib auch die zugehörigen Berührungspunkte an.
>  
> Also der Punkt S liegt außerhalb des Kreises, und zwei
> Tangenten schneiden sich am Punkt S, so denke ich das, und
> beide verlaufen am Kreis vorbei und haben einen
> Schnittpunkt, natürlich ist der Eine Punkt gleich dem
> anderen Punkt der Tangente am Kreis.
>  
> So:
>  
> x²+y²= 25   ; S(-1/7)
>  
> dann gebe ich das alles in die Mittelpunktsform:
>  
> (xt- xs)² + (yt + ys) ² = 25
>  (xt+1)² + (yt - 7) ² = 25

Hier ist schon ein Fehler passiert.
Du brauchst den Thaleskreis um den Mittelpunkt der Strecke von S und dem Ursprung. Der Radius dieses Kreises ergibt sich dann analog.



>  
> so einsetzten:
>  
> x² + y² = (x+1)² + (y-7)²
>  nachher Klammer auflösen, kürzen, ...
>  
> 0 = 2x - 14y + 50

Das ist erstmal eine Bedingungsgleichung für die Schnittpunkte der beiden Kreise.

>  
> das glaube ich ist dann die Gerade von Punkt T (der dem
> Berührungspunkt der Tangente am Kreis) zum anderen Punkt T
> (dem Berühr. punkt auf der anderen seite des Kreises der
> anderen Tangente)
>  
> was mache ich nun, das darüber war mein Ansatz, hoffe das
> es so richtig ist,

Die Bedingungsgleichung für die Schnittpunkt nach einer Variablen auflösen und in eine Kreisgleichung einsetzen.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de