www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Tangente an einem Graphen
Tangente an einem Graphen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente an einem Graphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Mi 11.04.2007
Autor: MatheFan2007

Aufgabe
[mm] f_{k}(x) [/mm] = [mm] \bruch{1}{x*(k-ln(x))^2} [/mm] , k [mm] \varepsilon \IR [/mm] und
[mm] D_{k} [/mm] = [mm] \IR^+ [/mm] \ [mm] {e^k} [/mm]

Jeder Graph [mm] G_{k} [/mm] hat genau eine Tangente [mm] t_{k}, [/mm] die durch den Ursprung geht. Bestimmen Sie Funktionsgleichung für [mm] t_{k}. [/mm]

Ich habe die Ableitung richtig gebildet:

[mm] f_{k}'(x) [/mm] =  [mm] \bruch{2-k+ln(x)}{x^2 * (k-ln(x))^3} [/mm]

Aber das Problem ist, dass ich ja nicht weiß, an welcher Stelle die Tangente den Graphen berüht. Wie kriegt man das denn raus?
kann man sowas machen?  [mm] f_{k}(x) [/mm] = mx
aber da kommt nichts sinnvolles raus.

kann jemand mir bitte dabei helfen?

vielen vielen dank schon mal im voraus

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangente an einem Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Mi 11.04.2007
Autor: Sigrid

Hallo Mathefan,

[willkommenmr]

> [mm]f_{k}(x)[/mm] = [mm]\bruch{1}{x*(k-ln(x))^2}[/mm] , k [mm]\varepsilon \IR[/mm]
> und
> [mm]D_{k}[/mm] = [mm]\IR^+[/mm] \ [mm]{e^k}[/mm]
>  
> Jeder Graph [mm]G_{k}[/mm] hat genau eine Tangente [mm]t_{k},[/mm] die durch
> den Ursprung geht. Bestimmen Sie Funktionsgleichung für
> [mm]t_{k}.[/mm]
>  
> Ich habe die Ableitung richtig gebildet:
>  
> [mm]f_{k}'(x)[/mm] =  [mm]\bruch{2-k+ln(x)}{x^2 * (k-ln(x))^3}[/mm]
>  
> Aber das Problem ist, dass ich ja nicht weiß, an welcher
> Stelle die Tangente den Graphen berüht. Wie kriegt man das
> denn raus?
> kann man sowas machen?  [mm]f_{k}(x)[/mm] = mx
>  aber da kommt nichts sinnvolles raus.

Doch, du musst jetzt nur hier weiter machen:

Wenn [mm] B(x_B|y_B) [/mm] der Berührpunkt ist, muss gelten: $ m = [mm] f'(x_B) [/mm] $.
Außerdem weißt du, dass B gemeinsamer Punkt von Kurve und Tangente ist.

Ich mach' jetzt erstmal hier Schluss. Vielleicht reicht das schon und du kommst alleine weiter. Sonst melde dich nochmal.

Gruß
Sigrid


>  
> kann jemand mir bitte dabei helfen?
>  
> vielen vielen dank schon mal im voraus
>  
> PS: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
                
Bezug
Tangente an einem Graphen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:41 Mi 11.04.2007
Autor: MatheFan2007

ne.. ich komme nicht klar...

also, muss ich denn jetzt sowas machen? f(x) = f'(x)*x ?

Bezug
                        
Bezug
Tangente an einem Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mi 11.04.2007
Autor: Sigrid

Hallo MatheFan,

Du hast:

$ [mm] f_{k}(x) [/mm] $ = $ [mm] \bruch{1}{x\cdot{}(k-ln(x))^2} [/mm] $ , k $ [mm] \varepsilon \IR [/mm] $ und


$ [mm] f_{k}'(x) [/mm] $ =  $ [mm] \bruch{2-k+ln(x)}{x^2 \cdot{} (k-ln(x))^3} [/mm] $


Die Gleichung der Tangente hat die Form $ y=mx $ mit $ m = [mm] f_k'(x_B) [/mm] = [mm] \bruch{2-k+ln(x_B)}{x_B^2 \cdot (k-ln(x_B))^3} [/mm] $,

also hat t die Gleichung

$ y = [mm] \bruch{2-k+ln(x_B)}{x_B^2 \cdot (k-ln(x_B))^3} \cdot [/mm] x $

Da B gemeinsamer Punkt der Kurve und der Tangente ist, gilt:

[mm] $y_B [/mm] =  [mm] \bruch{1}{x_B \cdot (k-ln(x_B))^2} [/mm] $

und

$ [mm] y_B [/mm] = [mm] \bruch{2-k+ln(x_B)}{x_B^2 \cdot (k-ln(x_B))^3} \cdot x_B [/mm] $

Wenn du dieses Gleichungssystem löst, erhälst du den Berührpunkt.

Gruß
Sigrid

Bezug
                                
Bezug
Tangente an einem Graphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Mi 11.04.2007
Autor: MatheFan2007

so hatte ich es ja auch gemacht, nachdem du es mir eben erklärt hast. hab jetzt rausgefunden, dass ich einen kleinen rechenfehler hatte. deshalb hatte ich eine falsche lösung und war so unsicher. ansonsten hatte ich das schon eben, als du es mir erklärt hast, verstanden...

also ich habe für [mm] X_{B} [/mm] = e^(2-2k)

vielen vielen dank Sigrid ;)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de