www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Tangente bestimmen
Tangente bestimmen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Mo 21.09.2015
Autor: Rebellismus

Aufgabe
Bestimme die Funktionsgleichung der Tangente am Schaubild von f an der Stelle x. Vereinfache den Differenzenquotienten
mit Polynomdivision bei d) - f) und mit der 3. binomische Formel bei a) - c) und h)

a) [mm] f(x)=x^2 [/mm] für x=1

c) [mm] f(x)=x^2-1 [/mm] für x=-2

d) [mm] f(x9=\bruch{1}{2}x^3 [/mm] für x=2

f) [mm] f(x)=x^3-1 [/mm] für x=1

h) [mm] f(x)=\bruch{1}{x^2} [/mm] für x=1


a)

wie bestimme ich den Funktionsgleichung der Tangente ? Für die tangente gilt:

y(x)=mx+n

die Steigung m bestimme ich mit der Ableitung von f(x)

f'(x)=2x

m=f'(1)=2

wie bestimme ich nun n?

f(1)=y(1)=1

1=2+n

n=-1

ist das so richtig? ich soll noch den differenzenqoutienten vereinfachen. was ist das?
EDIT: ok ich glaube ich weiß was der differenzenquotient ist. aber soll ich den differenzenquotient von f(x) bestimmen oder von der tangente?

        
Bezug
Tangente bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Mo 21.09.2015
Autor: Steffi21

Hallo, du hast die Gleichung für die Tangente [mm] f_t(x)=m*x+n, [/mm] in Aufgabe a) [mm] f_t(x)=2x-1 [/mm] korrekt gelöst, mit dem []Differenzenquotient bestimmst Du die Ableitung an einer Stelle [mm] x_0, [/mm] Steffi

Bezug
                
Bezug
Tangente bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Mo 21.09.2015
Autor: Rebellismus

soll ich den differenzenquotienten der funktion f(x) bestimmen oder von der tangente [mm] f_t(x) [/mm] ?

[mm] f(x)=x^2 [/mm]

[mm] x_1=1 [/mm]
[mm] x_2=3 [/mm]

Ich habe mir einfach 2 variabeln ausgesucht. das kann ich doch machen oder?

Differenzenquotient: [mm] \bruch{f(3)-f(1)}{3-1}= \bruch{9-1}{3-1}=4 [/mm]

wie soll ich das mit der 3 binomischen formel vereinfachen?



Bezug
                        
Bezug
Tangente bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Mo 21.09.2015
Autor: fred97

Nehmen wir uns mal f) vor: [mm] f(x)=x^3-1, [/mm] x=1.

Vielleicht meint der Aufgabensteller folgendes: berechne die Ableitung von f in x=1 nicht über [mm] f'(x)=3x^2, [/mm] sondern über den Differenzenquotienten:

  [mm] \bruch{f(x)-f(1)}{x-1}=\bruch{x^3-1}{x-1}. [/mm]

Polynomdivision liefert:

   [mm] \bruch{f(x)-f(1)}{x-1}=\bruch{x^3-1}{x-1}=x^2+x+1. [/mm]

Also: [mm] \bruch{f(x)-f(1)}{x-1} \to [/mm] 3 für x [mm] \to [/mm] 1.

FRED

Bezug
                                
Bezug
Tangente bestimmen: allgemeine frage
Status: (Frage) beantwortet Status 
Datum: 16:48 Mo 21.09.2015
Autor: Rebellismus

eine tangente ist definiert als

y=mx+n

dabei ist m die steigung. was ist n? hat es einen bestimmten namen?

Bezug
                                        
Bezug
Tangente bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Mo 21.09.2015
Autor: Herby

Hi,

> eine tangente ist definiert als
>  
> y=mx+n
>  
> dabei ist m die steigung. was ist n? hat es einen
> bestimmten namen?

setz' einmal x=0 ein, was kommt dann heraus und was bedeutet das?

Viele Grüße
[Dateianhang nicht öffentlich] Herby

Bezug
        
Bezug
Tangente bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 Mo 21.09.2015
Autor: rabilein1

Du hast die Steigung (durch Ableitung bei x) und du hast einen Punkt, durch den die Tangente geht (x und y der gegebenen Funktion).

Daraus sollte man die Geradengleichung (Tangentengleichung) bestimmen können.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de