www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Tangente durch Punkt an Fkt
Tangente durch Punkt an Fkt < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente durch Punkt an Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 So 13.01.2008
Autor: phil-abi05

Aufgabe
[mm] f(x)=x^2+2x+2 [/mm]

Tangente an f(x) von (-1;-3) aus

Hallo,
bei der oben gestellten Aufgabe habe ich ein Problem. Irgendwie fehlt mir der letzte Kniff.

Die Steigung der Tangente ist ja die erste Ableitung von f(x) also:

f'(x)=2x+2

Jetzt in die Tangente y=mx+b einsetzen.

y=(2x+2)*x+b

Kann ich jetzt den Punkt von oben einsetzen um b zu bestimmen?

        
Bezug
Tangente durch Punkt an Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 So 13.01.2008
Autor: M.Rex

Hallo


> [mm]f(x)=x^2+2x+2[/mm]
>  
> Tangente an f(x) von (-1;-3) aus
>  Hallo,
>  bei der oben gestellten Aufgabe habe ich ein Problem.
> Irgendwie fehlt mir der letzte Kniff.
>  
> Die Steigung der Tangente ist ja die erste Ableitung von
> f(x) also:
>  
> f'(x)=2x+2
>  
> Jetzt in die Tangente y=mx+b einsetzen.
>  
> y=(2x+2)*x+b
>  
> Kann ich jetzt den Punkt von oben einsetzen um b zu
> bestimmen?

Yep, kannst du.
Ich würde aber erst die Steigung an der Stelle x=1 direkt errechnen.
Also f'(1)=2*1+2=4

Und jetzt:
f(x)=m*x+b
3=4*1+b
[mm] \gdw [/mm] b=-1

Also:

[mm] t(x)=\underbrace{4}_{=f'(1)}*x-1 [/mm]

Marius


Bezug
                
Bezug
Tangente durch Punkt an Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 So 13.01.2008
Autor: phil-abi05

Hallo Marius,

wieso berechnest du die Steigung an der Stelle x=1 ?? Der Punkt lautet doch (-1;-3). Hast du vll auch beim einsetzen einfach das Minus vergessen?

Bezug
                        
Bezug
Tangente durch Punkt an Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 So 13.01.2008
Autor: M.Rex


> Hallo Marius,
>  
> wieso berechnest du die Steigung an der Stelle x=1 ?? Der
> Punkt lautet doch (-1;-3). Hast du vll auch beim einsetzen
> einfach das Minus vergessen?

Opps, hast recht.

Marius
*Wer lesen kann, ist klar im Vorteil*

Bezug
                                
Bezug
Tangente durch Punkt an Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 So 13.01.2008
Autor: phil-abi05

Ok, also:

f'(-1) = 2*(-1)+2
f'(-1) = 0

Was passiert jetzt hier?

Bezug
                                        
Bezug
Tangente durch Punkt an Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 So 13.01.2008
Autor: Steffi21

Hallo, du hattest für die Tangente(n):

[mm] y_T=(2x+2)*x+b [/mm]

jetzt kennst du einen Punkt der Tangente(n) (-1; -3), einsetzen ergibt:

-3=(2x+2)*(-1)+b
-3=-2x-2+b
b=2x-1

somit hast du für die Tangente(n):

[mm] y_T=(2x+2)*x+2x-1 [/mm]
[mm] y_T=2x^{2}+4x-1 [/mm]

jetzt Funktion und Tangente(n) gleichsetzen:

[mm] 2x^{2}+4x-1=x^{2}+2x+2 [/mm]

diese quadratische Gleichung kannst Du lösen, Du erhälst die Stellen [mm] x_1 [/mm] und [mm] x_2, [/mm] an denen sich Funktion und Tangenten berühren, somit hast du für jede Tangente zwei Punkte,

Steffi




Bezug
                                                
Bezug
Tangente durch Punkt an Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 So 13.01.2008
Autor: phil-abi05


> [mm]y_T=(2x+2)*x+b[/mm]
>  
> jetzt kennst du einen Punkt der Tangente(n) (-1; -3),
> einsetzen ergibt:
>  
> -3=(2x+2)*(-1)+b
>  -3=-2x-2+b
>  b=2x-1
>  

Hallo Steffi,

wie ich sehe hast du den Punkt ja eingesetzt, außer für das x in der Steigung. Wieso auch nicht in das m ?? Schon mal danke dafür.

Bezug
                                                        
Bezug
Tangente durch Punkt an Fkt: Berührstelle unbekannt
Status: (Antwort) fertig Status 
Datum: 06:32 Mo 14.01.2008
Autor: Loddar

Hallo Phil!


> wie ich sehe hast du den Punkt ja eingesetzt, außer für das
> x in der Steigung. Wieso auch nicht in das m ??

Dieses $x_$ in Steffis Formel ist ja die Berührstelle zwischen Kurve und der gesuchten Tangente. Und diese Berührstelle $x_$ kennen wir noch gar nicht.

Etwas günstiger wäre es gewesen, auch unterschiedliche Bezeichnungen einzuführen mit Berührpunkt $B \ [mm] \left( \ x_B \ | \ y_B \ \right)$ [/mm] .


Gruß
Loddar


Bezug
        
Bezug
Tangente durch Punkt an Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 So 13.01.2008
Autor: Teufel

Hallo!

Der Punkt liegt ja nich auf der Parabel drauf, deswegen kann man nicht einfach die Steigung in diesem Punkt berechnen.

Stattdessen kannst du es so machen:

Du erstellt die Geradengleichung für eine allgemeine Tangente an der Parabel  mit der Form: t(x)=f'(a)(x-a)+f(a), wobei P(a|f(a)) ein Punkt der Parabel ist.

Der Punkt A(-1|-3) liegt auf der Tangente. Also kannst du ihn in die Tangente einsetzen um noch das a rauszukriegen!

Bezug
        
Bezug
Tangente durch Punkt an Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 So 13.01.2008
Autor: weduwe

alternativ kannst du so vorgehen
[mm]g: y=mx+n\to y=mx+m-3[/mm] jetzs schneidest du g mit der parabel
und beachtest, dass g tangente sein soll, also für die diskriminante der quadratischen gleichung in x D = 0 gilt.
daraus erältst du
[mm]D²=(2-m)²-4(5-m)=0\to m=\pm 4[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de