www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Tangente gesucht
Tangente gesucht < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Mi 15.09.2010
Autor: miss_alenka

Aufgabe
welche tangente an den graphen dr funktion f(x)= e^-x ist parallel zur sehne durch die beiden punkte P(-1/e) und Q (1/1/e) des graphen von f? berechnen sie zunächst die steigung der sehne.

hallo ich bin es noch einmal:)

alsooo, ich hoffe ich liege richtig: die tangente die gesucht wird muss den gleichen anstieg haben wie die sehne. also hab ich [mm] m_{t} [/mm] berechnet, also einfach die erste ableitung: -e^-x.

so und nun dachte ich, kann ich mir einen punkt von den beiden aussuchen. habe den punkt P genommen. und will einsetzen: e= -e^-x*(-1)+n

hoffe es ist bis jetz richtig. jedoch kann ich die gleichung iwie nicht lösen:/ dieses e verwirrt total...

hoffe jemand kann helfen!!
lg miss_alenka

        
Bezug
Tangente gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Mi 15.09.2010
Autor: M.Rex

Hallo

Wenn du zwei Punkte [mm] P(x_{p}/y_{p}) [/mm] und [mm] Q(x_{q}/y_{q}) [/mm] hast, kannst du ja mit [mm] m=\bruch{y_{p}-y_{q}}{x_{p}-x_{q}} [/mm] die Steigung der Gearden durch diese beiden Punkte bestimmen.

Hier ist dann: p(-1/e) und [mm] Q(1/e^{-1}), [/mm] also [mm] m=\bruch{e-\bruch{1}{e}}{-1-1} [/mm]

Das ist die Steigung deiner Sehne.

Ich hoffe, das hilft erstmal weiter, wenn nicht, frag ruhig nach.

Marius


Bezug
                
Bezug
Tangente gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Mi 15.09.2010
Autor: miss_alenka

vielen dank, also ich hab jetzt -6/5 raus.? ich hab das mit dem e einfach so in den taschenrechner eingegeben. ich weiß nicht wie man es sonst rechnen kann.--> e-1/e/-1-1. Könntest du es mir vielleicht zeigen?



Bezug
                        
Bezug
Tangente gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Mi 15.09.2010
Autor: M.Rex

Hallo

Lass das e ruhig in der Lösung stehen, du musst ja die beiden Steigungen vergleichen, in denen jeweils e vorkommt. Eventuell erleichter das "Stehenlassen" diese Rechnung erheblich.

Du hast:

$ [mm] m=\bruch{e-\bruch{1}{e}}{-1-1} [/mm] $

Der Nenner dürfte ja kein Problem dastestellen,mach den Zähler mal gleichmamig, und fasse dann zusammen.

Also:

$ [mm] m=\bruch{e-\bruch{1}{e}}{-1-1}=\bruch{\bruch{e^2-1}{e}}{-2}=\ldots [/mm]

Marius


Bezug
                                
Bezug
Tangente gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Mi 15.09.2010
Autor: miss_alenka

:( wieso heißt es denn da [mm] e^2-1/e? [/mm] ich weiß wirklichh nicht wie man da weiter fortfährt...

Bezug
                                        
Bezug
Tangente gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Mi 15.09.2010
Autor: abakus


> :( wieso heißt es denn da [mm]e^2-1/e?[/mm] ich weiß wirklichh
> nicht wie man da weiter fortfährt...

Hallo,
schon mal was von Erweitern gehört?
Die Zahl e kann man schreiben als [mm] \bruch{e}{1}, [/mm] und das wurde mit e erweitert zu [mm] \bruch{e^2}{e}. [/mm]
Das wurde gemacht, weil man nur GLEICHNAMIGE Brüche einfach addieren/subtrahieren kann.
Gruß Abakus


Bezug
                                                
Bezug
Tangente gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Mi 15.09.2010
Autor: miss_alenka

hm ok dankeschön.

Bezug
                                                        
Bezug
Tangente gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Mi 15.09.2010
Autor: oli_k

War das jetzt ne Frage? ;-)

Bezug
                                                                
Bezug
Tangente gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Mi 15.09.2010
Autor: miss_alenka

eigentlich schon..:) ich beherrsche einfach diese matheregeln nicht..muss die mir irgendwie jetz selber beibringen..

was schreibt man denn da nun für: [mm] (e^2-1/e)/(-2) [/mm] ???

Bezug
                                                                        
Bezug
Tangente gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Mi 15.09.2010
Autor: abakus


> eigentlich schon..:) ich beherrsche einfach diese
> matheregeln nicht..muss die mir irgendwie jetz selber
> beibringen..
>  
> was schreibt man denn da nun für: [mm](e^2-1/e)/(-2)[/mm] ???

Na, genau so!
Man könnte höchstens noch einen gemeinsamen Nenner nehmen, also [mm] \bruch{e^2-1}{-2e}. [/mm] Nun leite endlich die gegebene e-Funktion ab uns schau, wo sie genau diesen Anstieg hat.
Gruß Abakus



Bezug
                                                                                
Bezug
Tangente gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 Mi 15.09.2010
Autor: miss_alenka

vielen dank für deine hilfe!

aber ich gebe es heute auf, will hier auch nicht nach jedem kleinen schritt fragen.

lg miss_alenka

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de