www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Tangente in Punkt (xo/yo)
Tangente in Punkt (xo/yo) < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente in Punkt (xo/yo): Tangentenschnittpunkte
Status: (Frage) beantwortet Status 
Datum: 21:08 Di 16.03.2010
Autor: Stiggel

Nabend zusammen!

ich habe folgendes Problem:

Gegeben ist die Funktion [mm] y=(c^{2/3}-x^{2/3})^{3/2} [/mm]

Die Ableitung dieser Funktion ergibt:

[mm] y'=-(c^{2/3}-x^{2/3})^{1/2} [/mm] / [mm] x^{1/3}=-(y/x)^{1/3} [/mm]

Für die Tangente in Punkt [mm] (X_o/Y_o) [/mm] gilt :

[mm] y-y_0= -(y_o/x_o)^{1/3} [/mm] ⋅ [mm] (x-x_o) [/mm]


Bis hierhin ist alles klar, nur verstehe ich jetzt nicht, wie die in dem Artikel auf die Achsenschnittpunkte kommen, welche lauten:

[mm] X(X_o^{1/3}*c^{2/3} [/mm] ;0) und Y=(0; [mm] Y_o^{1/3}*c^{2/3}) [/mm]

Wäre sehr dankbar, wenn mir jemand erklären könnte, wie man auf die beiden Schnittpunkte kommt. Mit einfachem X bzw. Y= Null setzen klappt es bei mir nicht...

Danke im Voraus

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.onlinemathe.de/forum/Problem-mit-Tangente

        
Bezug
Tangente in Punkt (xo/yo): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:17 Di 16.03.2010
Autor: abakus


> Nabend zusammen!
>  
> ich habe folgendes Problem:
>
> Gegeben ist die Funktion y=(c23-x23)32

Lies mal selber, was du hier geschrieben hast.
Gruß Abakus

>  
> Die Ableitung dieser Funktion ergibt:
>
> y'=-(c^(2/3)-x^(2/3))^(12) / x^(1/3)=-(y/x)^(1/3)
>  
> Für die Tangente in Punkt (Xo/Yo) gilt :
>
> y-y0= -(yo/xo)^(1/3) ⋅ (x-xo)
>
>
> Bis hierhin ist alles klar, nur verstehe ich jetzt nicht,
> wie die in dem Artikel auf die Achsenschnittpunkte kommen,
> welche lauten:
>
> X(Xo^(1/3)*c^(2/3) ;0) und Y=(0; Yo^(1/3)*c^(2/3))
>  
> Wäre sehr dankbar, wenn mir jemand erklären könnte, wie
> man auf die beiden Schnittpunkte kommt. Mit einfachem X
> bzw. Y= Null setzen klappt es bei mir nicht...
>  
> Danke im Voraus
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
> http://www.onlinemathe.de/forum/Problem-mit-Tangente


Bezug
        
Bezug
Tangente in Punkt (xo/yo): Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Mi 17.03.2010
Autor: angela.h.b.


> Nabend zusammen!
>  
> ich habe folgendes Problem:
>
> Gegeben ist die Funktion [mm]y=(c^{2/3}-x^{2/3})^{3/2}[/mm]
>  
> Die Ableitung dieser Funktion ergibt:
>
> [mm]y'=-(c^{2/3}-x^{2/3})^{1/2}[/mm] / [mm]x^{1/3}=-(y/x)^{1/3}[/mm]
>  
> Für die Tangente in Punkt [mm](X_o/Y_o)[/mm] gilt :
>
> [mm]y-y_0= -(y_o/x_o)^{1/3}[/mm] ⋅ [mm](x-x_o)[/mm]
>
>
> Bis hierhin ist alles klar, nur verstehe ich jetzt nicht,
> wie die in dem Artikel auf die Achsenschnittpunkte kommen,
> welche lauten:
>
> [mm]X(X_o^{1/3}*c^{2/3}[/mm] ;0) und Y=(0; [mm]Y_o^{1/3}*c^{2/3})[/mm]
>  
> Wäre sehr dankbar, wenn mir jemand erklären könnte, wie
> man auf die beiden Schnittpunkte kommt. Mit einfachem X
> bzw. Y= Null setzen klappt es bei mir nicht...


Hallo,

[willkommenmr].

Ich habe mir gestern erlaubt, Deinen Text so zu bearbeiten, daß er Sinn macht - prüfe in Zukunft bitte Deine Posts daraufhin, ob wirklich alles so erscheint wie geplant. Am Anfang, wenn man mit der hiesigen Formeleingabe noch nicht so vertraut ist, geht manchmal was schief, und es ist schade, wenn Du wegen Unlesbarkeit keine Antwort bekommst.

Es ist hier so, daß wir von Dir lt. Forenregeln Lösungsansätze sehen möchten,
und in der Tat könnten wir Dir besser helfen, würdest Du uns sagen, welche Schnittpunkte hast Du ausgerechnet  hast - möglicherweise sind's dieselben, bloß in andersfarbigem Kleid.

Ich habe eben mal die beiden Punkte in die Tangentengleichung eingesetzt und festgestellt, daß sie jedenfalls richtig sind.

Unterwegs verwendet habe ich, daß [mm] (c^{2/3}-x_0^{2/3})=y_0^{2/3}. [/mm] Möglicherweise ist dies das Detail, welches Dir fehlte.

Wenn Du damit aber immer noch nicht klarkommst, rechne hier vor, damit wir gemeinsam den Fehler suchen können.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de