www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Tangente und Funktion: FLäche
Tangente und Funktion: FLäche < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente und Funktion: FLäche: wie komme ich an die tangente?
Status: (Frage) beantwortet Status 
Datum: 12:04 Do 24.03.2005
Autor: joimic

hallo
es is t die funktion f(x)= x³-6x gegeben. diese schließt mit der tangente an der stelle x=-1 eine fläche ein.
in der schule haben wir als tangente raus: t(x)=3x+8, die steigung also 3.

ich habe nun nachgerechnet:
x=-1
f'(x)=3x²-6
f'(-1)=3-6=-3 : dies ist also die tangentensteigung m=-3
aber der wert oben ist 3. wer hat nun recht, denn es ergeben sich ja 2 unterschiedliche ergebnisse
meine tangente lautet: t(x)=-3x+2
die tangenten gehen zwar beide durch x=-1, schließen aber unterschiedliche flächen ein.
und von wo bis wo muss ich dann integrieren?
eine grenze ist -1, aber was nehme ich als andere grenze?
danke für hilfe
Ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
Tangente und Funktion: FLäche: Skizze (edit.)
Status: (Antwort) fertig Status 
Datum: 12:17 Do 24.03.2005
Autor: Loddar

Hallo joimic!


> es is t die funktion f(x)= x³-6x gegeben. diese schließt
> mit der tangente an der stelle x=-1 eine fläche ein.
> in der schule haben wir als tangente raus: t(x)=3x+8, die
> steigung also 3.
>  
> ich habe nun nachgerechnet:
> x=-1
> f'(x)=3x²-6
> f'(-1)=3-6=-3 : dies ist also die tangentensteigung m=-3
> aber der wert oben ist 3. wer hat nun recht, denn es
> ergeben sich ja 2 unterschiedliche ergebnisse
> meine tangente lautet: t(x)=-3x+2

[daumenhoch] Diese Tangentengleichung habe ich auch erhalten.
Hast Du auch die Funktionsvorschrift für $f(x)$ richtig abgeschrieben?


> die tangenten gehen zwar beide durch x=-1, schließen aber
> unterschiedliche flächen ein.
> und von wo bis wo muss ich dann integrieren?
> eine grenze ist -1, aber was nehme ich als andere grenze?

Die andere Grenze ist der Schnittpunkt zwischen Tangente und Funktionsgraph (siehe Skizze).

Diesen Schnittpunkt [mm] $x_S$ [/mm] mußt Du also zunächst ermitteln durch:
[mm] $f(x_S) [/mm] \ = \ [mm] t(x_S)$ $\gdw$ $x_S^3 [/mm] - [mm] 6*x_S [/mm] \ = \ [mm] -3*x_S [/mm] + 2$

Edit: Faktor vor [mm] $\blue{x^3}$ [/mm] korrigiert. Loddar



[Dateianhang nicht öffentlich]



Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Tangente und Funktion: FLäche: schnittstellenberechnung
Status: (Frage) beantwortet Status 
Datum: 12:31 Do 24.03.2005
Autor: joimic

wie krieg ich den 2. schnittpunkt ausgerechnet?
mit polynomdivision schaff ich es nicht und mit ausklammern auch nicht
würdest du mir erklären wie ich es schaffe?

Bezug
                        
Bezug
Tangente und Funktion: FLäche: Ups - Tippfehler!
Status: (Antwort) fertig Status 
Datum: 12:56 Do 24.03.2005
Autor: Loddar

Hallo joimic!


Ich hatte mich in der obigen Antwort vertippt. Es muß natürlich heißen:

[mm] $\red{1}*x_S^3 [/mm] - [mm] 6*x_S [/mm] \ = \ [mm] -3*x_S [/mm] + 2$


[sorry] Kommst Du nun auf die andere Schnittstelle [mm] $x_S$ [/mm] ?

[aufgemerkt] Ansatz über Polynomdivision ...


Gruß
Loddar


Bezug
                                
Bezug
Tangente und Funktion: FLäche: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:06 Do 24.03.2005
Autor: joimic

danke, habe die 2. schnittstelle gefunden
vielen dank für deine hilfe!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de