www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Tangente und Normale
Tangente und Normale < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente und Normale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Mo 31.03.2008
Autor: dummy91

Aufgabe
gegeben ist der graph der funktion f mit f(x)= 3/x und für jedes [mm] m\in \IR [/mm] eine gerade gm:y=mx+3
bestimmen sie die gleichung der geraden gm,die mit dem graphen von f genau einen gemeinsamen schnitpunkt P0 hat

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

also ich weiß zwar, dass diese frage leicht ist, aber komme irgendwie trozdem nich weiter...

gegeben ist der graph der funktion f mit f(x)= 3/x und für jedes [mm] m\in \IR [/mm] eine gerade gm:y=mx+3
bestimmen sie die gleichung der geraden gm,die mit dem graphen von f genau einen gemeinsamen schnitpunkt P0 hat...

die aufgabe geht noch weiter, aber den rest kann ich..
das problem liegt bei der berechnung von m
DANKE!

        
Bezug
Tangente und Normale: 2 Gleichungen
Status: (Antwort) fertig Status 
Datum: 19:49 Mo 31.03.2008
Autor: Loddar

Hallo dummy!


Schau Dir mal den Graphen von $f(x) \ = \ [mm] \bruch{3}{x}$ [/mm] an. Eine Gerade kann mit dieser Kurve nur dann genau einen Schnittpunkt haben, wenn es sich hierbei um einen Berührpunkt handelt.

Von daher muss für den x-Wert des Berührpunktes gelten, dass sowohl der Funktionswert als auch der Steigungswert (= 1.  Ableitung) identisch sind. Damit ergeben sich folgende zwei Bestimmungsgleichungen für 2 Unbekannte:

$$f(x) \ = \ g(x)$$
$$f'(x) \ = \ g'(x)$$

Gruß
Loddar


Bezug
                
Bezug
Tangente und Normale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Mo 31.03.2008
Autor: dummy91

danke, aber meinen sie mit der ableitung jetzt
f'(x)= [mm] -3/x^2 [/mm]
und g'(x)=m

und das dann gleichsezten?
oder habe ich es falsch verstanden( was nicht sehr unwahrscheinlich ist)

Bezug
                        
Bezug
Tangente und Normale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Mo 31.03.2008
Autor: XPatrickX

Hey, du hast es richtig verstanden. Die beiden Ableitungen gleichsetzen und die beiden Funktionen selber.  Dann hast du ein Gleichungssystem mit zwei Gleichungen und den 2 Unbekannten x und m. Dieses kannst du dann lösen. Gruß Patrick

Bezug
                                
Bezug
Tangente und Normale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 31.03.2008
Autor: dummy91

vielen dank!
jetzt habe ich es =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de