www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Tangente von P an Kugel
Tangente von P an Kugel < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente von P an Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Mi 30.11.2011
Autor: MMK

Aufgabe
Gegeben:
Punkt R: (4/6/-4)

Kugel K: [mm] \vec{x} [/mm] - [mm] \vektor{-6 \\ -4 \\ 1 }^{2}=45 [/mm]

Legt man von R aus Tangenten an die Kugel, so bilden die Berührpunkte einen Kreis (Polarkreis). Die Ebene in der der Polarkreis liegt, bezeichnez man als Polarebene.
Bestimme den Polarkreismittelpunkt (p'), den Polarkreisradius (r') und eine Gleichung der Polarebene.

ich schlag mich jez schon seit tagen mit der aufgabe rum und hab immer das gefühl das ich kurz davor bin den richtigen gedanken zu haben...

meine bisherige überlegung war den berürpunkt einer tangente über den satz des thales auszurechnen, aber die abstrhierung von zwei auf dreidimensional klappt nich so ganz bei  mir :-(...
is das überhaupt der richtige weg oder muss ich mit was anderem anfangen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangente von P an Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Mi 30.11.2011
Autor: chrisno

Ich habe keine Übung mit dieser Aufgabe, aber ich würde so rangehen:
Es gibt drei Strecken:
1. die Verbindung zwischen R und dem Kugelmittelpunkt, die ist bekannt,
2. die Verbindung zwischen R und einem Berührpunkt, da fehlt der Berührpunkt
3. der Radius von R zu dem Berührpunkt, da ist die Länge bekannt und diese Strecke muss senkrecht zur vorigen stehen.
Mit den Bedingungen sollte sich die Gleichung für den Berührkreis ergeben.

Bezug
                
Bezug
Tangente von P an Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Mi 30.11.2011
Autor: MMK

das is ja soweit alles klaa, aber ich kenne keine methode mit der ich mit den mir gegebenen informationen rechnen kann. wie schon mal erwähnt, habe ich versucht mit dem thaliskreis weiterzukommen dessen mittelpunkt zwischen R und mittelpunkt der kugel liegt, aber der hat mir im endefekt auch nich weitergeholfen...

Bezug
                        
Bezug
Tangente von P an Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Mi 30.11.2011
Autor: chrisno

Nenn den gesuchten Punkt [mm] $\vektor{x \\ y \\ z}$. [/mm] Rechne mit ihm los, indem Du die Strecken, in denen er vorkommt als Vektoren hinschreibst.

Bezug
        
Bezug
Tangente von P an Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:53 Mi 30.11.2011
Autor: reverend

Hallo MMK, [willkommenmr]

In Deiner Aufgabenstellung ist ein Fehler:

> Gegeben:
> Punkt R: (4/6/-4)
>
> Kugel K: [mm]\vec{x}[/mm] - [mm]\vektor{-6 \\ -4 \\ 1 }^{2}=45[/mm]

Das müsste doch heißen: [mm] \left(\vec{x}-\vektor{-6\\-4\\1}\right)^{2}=45 [/mm]

Der Formeleditor (bzw. eigentlich der Parser) funktioniert übrigens um Klassen besser, wenn Du möglichst wenig Leerzeichen in Deinen Eingabecode schreibst.

> Legt man von R aus Tangenten an die Kugel, so bilden die
> Berührpunkte einen Kreis (Polarkreis). Die Ebene in der
> der Polarkreis liegt, bezeichnez man als Polarebene.
>  Bestimme den Polarkreismittelpunkt (p'), den
> Polarkreisradius (r') und eine Gleichung der Polarebene.
>  ich schlag mich jez schon seit tagen mit der aufgabe rum
> und hab immer das gefühl das ich kurz davor bin den
> richtigen gedanken zu haben...

Das Gefühl kennt hier jeder. Gut beschrieben!

> meine bisherige überlegung war den berürpunkt einer
> tangente über den satz des thales auszurechnen, aber die
> abstrhierung von zwei auf dreidimensional klappt nich so
> ganz bei  mir :-(...
>  is das überhaupt der richtige weg oder muss ich mit was
> anderem anfangen?

Das ist schon gut, aber es würde hier wohl auch der gewöhnliche Pythagoras genügen, mathematisch gesehen ja nur ein Neffe des Thales. ;-)

Nennen wir den Kugelmittelpunkt M. Aus der Aufgabe ist [mm] M=\vektor{-6\\-4\\1} [/mm] zu entnehmen. Der Kugelradius sei K, hier [mm] K=\wurzel{45}=3\wurzel{5}. [/mm]

Weiter folgt geometrisch, dass der Normalenvektor der gesuchten Polarebene kollinear zu [mm] \overrightarrow{MR} [/mm] sein muss.

Eine beliebige Ebene, die nun die Punkte R und M enthält, enthält auch zwei Tangenten von R an die Kugel. Sei nun r der Radius des Polarkreises, s die Länge der Strecke von R zum Berührpunkt an die Kugel und d der Abstand von M und R, dann ist nach Pythagoras (und seinem Onkel Thales...) [mm] K^2+s^2=d^2. [/mm] In dieser Gleichung kommt also r gar nicht vor und wird folgerichtig für die Bestimmung der Ebene auch nicht benötigt.

Da K und d faktisch gegeben sind, ist s ja eindeutig zu ermitteln. Jetzt zeichne Dir mal die betrachtete Schnittebene und versuche, noch etwas zu (über und aus) r zu folgern. r ist die Höhe des gerade betrachteten rechtwinkligen Dreiecks mit den Seitenlängen K,s,d.

Hieraus kannst Du auch die Lage der Polarebene bzw. ihren Abstand von M oder R bestimmen.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de