www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Tangenten
Tangenten < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 Sa 30.10.2010
Autor: Kuriger

Hallo

Nun noch eine letzte Frage zu diesem Thema, nämlich betreffend horizontaler und vertikaler Tangente, dann kann ich nämlich den Matheteil für heute auf die Seite legen...

Bestimmen Sie alle Winkel t, bei welchen der entsprechende Punkt auf der Kurve eine horizontale oder vertikale Tangente hat.
r = [mm] e^{2t} [/mm]
x(t) = [mm] e^{2t} [/mm] * cos(t)
y (t) = [mm] e^{2t} [/mm] * sin(t)

[mm] \vec{r}(t) [/mm] = [mm] \vektor{x(t) \\ y(t)} [/mm] = [mm] \vektor{e^{2t} * cos(t) \\ e^{2t} * sin(t)} [/mm]

[mm] \dot{\vec{r}}(t) [/mm] = [mm] \vektor{e^{2t} * (2*cos(t) -sin(t))\\ e^{2t} *(2sin(t) + cos(t))} [/mm]

Horizontale Tangente: Liegt doch dann vor wenn y(t) = 0 ist?
0 = [mm] e^{2t} [/mm] *(2sin(t) + cos(t))

Darf ich durch [mm] e^{2t} [/mm] dividieren?

2sin(t) = -cos(t)

[mm] \bruch{2sin(t)}{cos(t)} [/mm] = -1
2tan(t) = -1
tan(t) = [mm] -\bruch{1}{2} [/mm]
t = arctan [mm] (-\bruch{1}{2}) [/mm]
t = -0.4636

Horizontale Tangente: Liegt doch dann vor wenn x(t) = 0 ist?
0 = [mm] e^{2t} [/mm] * (2*cos(t) -sin(t))
........

Auch hier finde ich wieder eine vorgefertigte Formel

Horizontale Tangente
[mm] \bruch{dy}{dt} [/mm] (t) = 0
[mm] \bruch{dy}{dt} [/mm] (t)= sin (t) * [mm] \bruch{dr}{dt} [/mm] (t) + r(t) * cos(t) = [mm] e^{2t} [/mm] *(2sin(t) + cos(t)) = 0
Das ist wieder das gleiche wie oben, also stimmt diese Formel...dann habe ich halt die Qual der Wahl

Gruss Kuriger


        
Bezug
Tangenten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Sa 30.10.2010
Autor: Al-Chwarizmi


> Hallo
>  
> Nun noch eine letzte Frage zu diesem Thema, nämlich
> betreffend horizontaler und vertikaler Tangente, dann kann
> ich nämlich den Matheteil für heute auf die Seite
> legen...
>  
> Bestimmen Sie alle Winkel t, bei welchen der entsprechende
> Punkt auf der Kurve eine horizontale oder vertikale
> Tangente hat.
>  r = [mm]e^{2t}[/mm]
>  x(t) = [mm]e^{2t}[/mm] * cos(t)
>  y (t) = [mm]e^{2t}[/mm] * sin(t)
>  
> [mm]\vec{r}(t)[/mm] = [mm]\vektor{x(t) \\ y(t)}[/mm] = [mm]\vektor{e^{2t} * cos(t) \\ e^{2t} * sin(t)}[/mm]
>  
> [mm]\dot{\vec{r}}(t)[/mm] = [mm]\vektor{e^{2t} * (2*cos(t) -sin(t))\\ e^{2t} *(2sin(t) + cos(t))}[/mm]
>  
> Horizontale Tangente: Liegt doch dann vor wenn y(t) = 0  ist?        [kopfschuettel]

Nein, du meinst (und solltest auch schreiben)   [mm] \dot{y}(t)=0 [/mm]

>  0 = [mm]e^{2t}[/mm] *(2sin(t) + cos(t))       [ok]
>  
> Darf ich durch [mm]e^{2t}[/mm] dividieren?

    Ja, denn [mm] e^{2\,t} [/mm] kann für kein $t$ den Wert 0 annehmen.
  

> 2sin(t) = -cos(t)
>  
> [mm]\bruch{2sin(t)}{cos(t)}[/mm] = -1
>  2tan(t) = -1
>  tan(t) = [mm]-\bruch{1}{2}[/mm]
>  t = arctan [mm](-\bruch{1}{2})[/mm]
>  t = -0.4636

    ....und unendlich viele weitere Werte !

Vergiss nicht, die Koordinaten der betreffenden Kurvenpunkte
anzugeben !
  

> Horizontale Tangente: Liegt doch dann vor wenn x(t) = 0 ist?     [notok]

    (wie oben)

>  0 = [mm]e^{2t}[/mm] * (2*cos(t) -sin(t))
>  ........
>  
> Auch hier finde ich wieder eine vorgefertigte Formel
>  
> Horizontale Tangente     [haee]

Ich dachte, du wolltest jetzt noch die Punkte mit vertikalen
Tangenten suchen ?

>  [mm]\bruch{dy}{dt}[/mm] (t) = 0
>  [mm]\bruch{dy}{dt}[/mm] (t)= sin (t) * [mm]\bruch{dr}{dt}[/mm] (t) + r(t) *
> cos(t) = [mm]e^{2t}[/mm] *(2sin(t) + cos(t)) = 0
>  Das ist wieder das gleiche wie oben, also stimmt diese
> Formel...dann habe ich halt die Qual der Wahl      [haee]

  kannitverstan !


LG    Al-Chwarizmi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de