www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Tangenten & Normalen
Tangenten & Normalen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten & Normalen: Aufgabe!
Status: (Frage) beantwortet Status 
Datum: 16:40 Mi 22.08.2007
Autor: Dumspatz

Aufgabe
8 Zeigen Sie, dass die Gerade t Tangente an den Graphen f ist. Geben Sie den Berührungspunkt an!
t: [mm] y=\bruch{8}{9}x [/mm] + [mm] \bruch{2}{3}; f(x)=x+\bruch{1}{x} [/mm]

Hallo Leute!!

Mein Problem besteht in der Aufgabe ganz einfach darin, dass ich nicht weiß wie ich beim ersten Schritt vorgehen muss.
Mir ist bekannt das ich eine x-Wert sowie einen y-Wert benötige um den Berührungspunkt anzugeben.
Es ist mir auch bekannt das ich ableiten muss, jedoch weiß ich leider nicht wie ich das hier machen soll :(
Ich hoffe das mir einer eine Vorhilfe machen kann, damit ich weiterrechnen kann.
Mit freundlichem Gruß
Max

        
Bezug
Tangenten & Normalen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Mi 22.08.2007
Autor: Fulla

Hi Dumspatz!

Wenn t eine Tangente an f ist, muss es (mindestens) ein x geben, für das gilt: f'(x)=t'(x) - es muss also einen x-Wert geben, an dem die Steigung der Funktion f gleich der Steigung der Geraden ist.

In diesem Fall wäre das:
[mm] $f'(x)=1-\frac{1}{x^2}$, $t'(x)=\frac{8}{9}$ [/mm]
[mm] $f'(x)=t'(x)\gdw 1-\frac{1}{x^2}=\frac{8}{9}\gdw\ldots\gdw x=3\frac{1}{3}=\frac{10}{3}$ [/mm]

Daraus folgt also, dass t wirklich eine Tangente an f ist.

Den Berührpunkt hast du jetzt auch schon - zumindest den x-Wert. Den musst du jetzt in f(x) oder t(x) einsetzten und du erhältst den y-Wert.


Lieben Gruß,
Fulla



Bezug
                
Bezug
Tangenten & Normalen: nicht der x-Wert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Mi 22.08.2007
Autor: Loddar

Hallo Fulla!


Du hast hier aber nicht den/die x-Wert/e des gesuchten Berührpunktes angegeben. Dafür erhalte ich nämlich zwei andere Lösungskandidaten.


Gruß
Loddar


Bezug
                        
Bezug
Tangenten & Normalen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:55 Mi 22.08.2007
Autor: Fulla

Hi Loddar!

Danke für den Hinweis! Du hast recht: man kommt auf 2 verschiedene x-Werte.


Bezug
        
Bezug
Tangenten & Normalen: Ergänzung
Status: (Antwort) fertig Status 
Datum: 17:09 Mi 22.08.2007
Autor: Loddar

Hallo Dumspatz!


Mit Fulla's Ansatz erhältst Du zwei mögliche x-Werte [mm] $x_{1,2}$ [/mm] des gesuchten Berührpunktes. Davon ist aber lediglich ein Wert auch wirklich zu diesem Berührpunkt gehörig.

Von daher musst du jeweils die entsprechenden Funktionswerte [mm] $t(x_{1,2})$ [/mm] und [mm] $f(x_{1,2})$ [/mm] bestimmen und vergleichen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de