www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Tangenten an Kreis bestimmen
Tangenten an Kreis bestimmen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten an Kreis bestimmen: unbekannte Gerade!
Status: (Frage) beantwortet Status 
Datum: 20:27 Mo 09.01.2006
Autor: carp41

Aufgabe
Bestimme die Zahl c so, dass die Gerade g: 3x-y=c den Kreis k: x²+y²=10 berührt.

Mein Problem ist es c zu bestimmen. Ich habe schon versucht die Geradengleichung (g: 3x-y=c) in die Kreisgleichung (k: x²+y²=10) -(also nach x oder y umstellen und in k: einsetzen) einzusetzen, zu addieren, gleichzustellen! Immerwieder komme ich nicht auf die Lösung und habe dann sowas wie  x²+(3x-c)²=10  zu stehen, was ich ausklammen kann und mit der p-q-Formel versuche zu lösen, was aber auch nicht geht. Ich weiß nicht mehr weiter und habe schon meinen ganzen Sonntag geopfert dies herauszufinden!Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Danke im Vorraus...!

carp41

        
Bezug
Tangenten an Kreis bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Mo 09.01.2006
Autor: Christian

Hallo.

> Bestimme die Zahl c so, dass die Gerade g: 3x-y=c den Kreis
> k: x²+y²=10 berührt.
>  Mein Problem ist es c zu bestimmen. Ich habe schon
> versucht die Geradengleichung (g: 3x-y=c) in die
> Kreisgleichung (k: x²+y²=10) -(also nach x oder y umstellen
> und in k: einsetzen) einzusetzen, zu addieren,
> gleichzustellen! Immerwieder komme ich nicht auf die Lösung
> und habe dann sowas wie  x²+(3x-c)²=10  zu stehen, was ich
> ausklammen kann und mit der p-q-Formel versuche zu lösen,
> was aber auch nicht geht. Ich weiß nicht mehr weiter und
> habe schon meinen ganzen Sonntag geopfert dies
> herauszufinden!Ich habe diese Frage in keinem Forum auf
> anderen Internetseiten gestellt.
>  Danke im Vorraus...!
>  

Keine Panik!

Erstmal sollten wir uns die Steigung der Geraden überlegen.
Diese ist 3. Die Gerade soll nun unseren Kreis berühren, das bedeutet, der Radius im Punkt (x,y) muß senkrecht zu dieser Geraden sein, sprich, eine Ursprungsgerade mit Steigung [mm] $-\frac{1}{3}$ [/mm] sein.
Die Schnittpunkte des Kreises mit dieser Geraden sind unsere Berührpunkte in spe.
Durch Einsetzen dieser Punkte in die Geradengleichung kann man die jeweiligen Werte für $c$ bestimmen.

Gruß,
Christian


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de