www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Tangenten an e-Funktion
Tangenten an e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten an e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:03 Fr 01.11.2019
Autor: hase-hh

Aufgabe
Bestimmen Sie die Punkte des Graphen der natürlichen Exponentialfunktion, in denen die Tangenten durch (1 / 1) verlaufen.

Moin Moin,

hier blicke ich nicht durch, was da genau gefragt ist und wie man zur Lösung kommt.


1. Idee

Die natürliche Exponentialfunktion lautet

f(x) = [mm] e^x [/mm]

oder nicht?


... und  f '(x) = [mm] e^x [/mm]


Die Tangentengleichungen, die hier gesucht werden (sind doch mehrere, oder?), haben die Form:

t(x) = m*x + b       m = f '(x)  


Nehmen wir an, die Tangente berührt f  bei [mm] (x_0 [/mm]  / [mm] e^{x_0}), [/mm] dann gilt


I.  f ' [mm] (x_0) [/mm] = [mm] e^{x_0} [/mm]

bzw.  t(x) = f ' [mm] (x_0)*x [/mm] +b

II.  t(1) = 1   bzw.  1 = f ' [mm] (x_0)*1 [/mm] + b

      1 = [mm] e^{x_0} [/mm] + b


ferner

III.  t(x) = f ' [mm] (x_0)*x [/mm] + b     bzw.  [mm] e^{x_0} [/mm] = [mm] e^{x_0}*x_0 [/mm] + b


Nun könnte ich noch II.  b = 1 - [mm] e^{x_0} [/mm]  in III. einsetzen...


[mm] e^{x_0} [/mm] = [mm] e^{x_0}*x_0 [/mm] +1 - [mm] e^{x_0} [/mm]


... aber was bringt das?  und wie komme ich zur Lösung???



Danke & Gruß!








        
Bezug
Tangenten an e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Sa 02.11.2019
Autor: Gonozal_IX

Hiho,

überlege dir, dass für die allgemeine Tangentengleichung einer Funktion an der Stelle [mm] x_0 [/mm] gilt:

$t(x) = [mm] f'(x_0)(x-x_0) [/mm] + [mm] f(x_0)$ [/mm]

Hier also:

$t(x) = [mm] e^{x_0}(x-x_0) [/mm] + [mm] e^{x_0} [/mm] = [mm] e^{x_0}(x-x_0 [/mm] + 1)$

Gesucht sind nun also all diejnigen [mm] x_0 [/mm] für die $t(1) = 1$, also [mm] $e^{x_0}(2 [/mm] - [mm] x_0) [/mm] = 1$

Das ergibt zwei nicht-triviale Lösungen…

Gruß,
Gono

Bezug
                
Bezug
Tangenten an e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Sa 02.11.2019
Autor: hase-hh

Moin Gono,

vielen Dank für die Antwort.


$ [mm] e^{x_0} [/mm] $ = $ [mm] e^{x_0}\cdot{}x_0 [/mm] $ +1 - $ [mm] e^{x_0} [/mm] $

> Hiho,
>  
> überlege dir, dass für die allgemeine Tangentengleichung
> einer Funktion an der Stelle [mm]x_0[/mm] gilt:
>  
> [mm]t(x) = f'(x_0)(x-x_0) + f(x_0)[/mm]
>  
> Hier also:
>  
> [mm]t(x) = e^{x_0}(x-x_0) + e^{x_0} = e^{x_0}(x-x_0 + 1)[/mm]
>  
> Gesucht sind nun also all diejnigen [mm]x_0[/mm] für die [mm]t(1) = 1[/mm],
> also [mm]e^{x_0}(2 - x_0) = 1[/mm]
>  
> Das ergibt zwei nicht-triviale Lösungen…
>  
> Gruß,
>  Gono

Ich war bis zu dieser Stelle gekommen:

[mm] e^{x_0} [/mm] = [mm] e^{x_0}\cdot{}x_0 [/mm] +1 - [mm] e^{x_0} [/mm]


... also weiter umformen...

[mm] 2e^{x_0} [/mm] = [mm] e^{x_0}\cdot{}x_0 [/mm] +1

[mm] 2e^{x_0} [/mm] - [mm] e^{x_0}\cdot{}x_0 [/mm] = 1

[mm] e^{x_0}*(2- x_0) [/mm] = 1


Aber wie soll ich das jetzt lösen?  Das Problem ist doch, dass [mm] x_0 [/mm] sowohl im Exponenten alsauch auf dem "Boden" vorkommt???


Mein Taschenrechner liefert zwar

[mm] x_{01} [/mm] = -1,146
[mm] x_{02} [/mm] = 1,841

aber wie kommt man schriftlich zur Lösung???

Bezug
                        
Bezug
Tangenten an e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Sa 02.11.2019
Autor: fred97


> Moin Gono,
>  
> vielen Dank für die Antwort.
>  
>
> [mm]e^{x_0}[/mm] = [mm]e^{x_0}\cdot{}x_0[/mm] +1 - [mm]e^{x_0}[/mm]
>  
> > Hiho,
>  >  
> > überlege dir, dass für die allgemeine Tangentengleichung
> > einer Funktion an der Stelle [mm]x_0[/mm] gilt:
>  >  
> > [mm]t(x) = f'(x_0)(x-x_0) + f(x_0)[/mm]
>  >  
> > Hier also:
>  >  
> > [mm]t(x) = e^{x_0}(x-x_0) + e^{x_0} = e^{x_0}(x-x_0 + 1)[/mm]
>  >  
> > Gesucht sind nun also all diejnigen [mm]x_0[/mm] für die [mm]t(1) = 1[/mm],
> > also [mm]e^{x_0}(2 - x_0) = 1[/mm]
>  >  
> > Das ergibt zwei nicht-triviale Lösungen…
>  >  
> > Gruß,
>  >  Gono
>
> Ich war bis zu dieser Stelle gekommen:
>  
> [mm]e^{x_0}[/mm] = [mm]e^{x_0}\cdot{}x_0[/mm] +1 - [mm]e^{x_0}[/mm]
>  
>
> ... also weiter umformen...
>  
> [mm]2e^{x_0}[/mm] = [mm]e^{x_0}\cdot{}x_0[/mm] +1
>
> [mm]2e^{x_0}[/mm] - [mm]e^{x_0}\cdot{}x_0[/mm] = 1
>
> [mm]e^{x_0}*(2- x_0)[/mm] = 1
>
>
> Aber wie soll ich das jetzt lösen?  Das Problem ist doch,
> dass [mm]x_0[/mm] sowohl im Exponenten alsauch auf dem "Boden"
> vorkommt???
>
>
> Mein Taschenrechner liefert zwar
>  
> [mm]x_{01}[/mm] = -1,146
>  [mm]x_{02}[/mm] = 1,841
>  
> aber wie kommt man schriftlich zur Lösung???  

Obige Gleichung  lässt sich nicht von Hand auflösen,  man benötigt schon  ein numerisches Verfahren.  Dein  Taschenrechner kann sowas offenbar.  





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de