www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Tangenten an einem Kegel
Tangenten an einem Kegel < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten an einem Kegel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:03 Fr 15.06.2007
Autor: Nr.4

Aufgabe
Sei K der Kegel mit der Gleichung
[mm] x^{2}+y^{2}-z^{2}=0. [/mm]
Bestimmen sie alle Tangenten an K durch den Punkt (1,0,0). Was entsteht geometrisch als Vereinigung aller dieser Tangenten?

Ich habe keine Ahnung wie ich an die Aufgabe rangehen soll! kann mir jeamnd helfen? gruß Nr.4

Ich habe diese Frage in keinem anderen Forum gestellt.



        
Bezug
Tangenten an einem Kegel: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:53 Fr 15.06.2007
Autor: generation...x

Kann das sein, dass du den falschen Punkt hast? Tippfehler? Wie man leicht nachrechnet, liegt (1, 0, 0) nicht auf dem Kegel.

Zur Sache: Die Tangenten bilden zusammen eine []Tangentialebene. Diese steht senkrecht auf dem []Normalenvektor, der in diesem Fall durch den []Gradient geliefert wird .

Bezug
                
Bezug
Tangenten an einem Kegel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Fr 15.06.2007
Autor: Nr.4

ne, das ist der richtige punkt! Steht ja auch Tangente an den Kegel K.

Die Aufgabe stammt aus der Linearen Algebra und nicht der Analysis. Ein Gradient oder überhaupt eine Ableitung wurde dort in keiner Vorlesung erwähnt! Das Thema war Quadriken.

Bezug
                        
Bezug
Tangenten an einem Kegel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:11 Fr 15.06.2007
Autor: generation...x

OK - wenn's so gemeint war. Du wirst feststellen, dass es (bis auf Translation längs einer in der Ebenen liegenden Gerade) genau eine Tangentialebene gibt, die durch diesen Punkt geht und zwar die, die durch (0, 1, 1) geht. Mal's dir mal auf...
Wie komm' ich drauf? Überleg dir, wie die Tangentialebenen liegen, dass es für jede Richtung in der x-y-Ebene genau eine gibt (bis auf Translation) und welche davon dann beim Schnitt mit x-y-Ebene durch (1, 0, 0) geht.

Zugegeben ziemlich heuristisch, aber zumindest hast du jetzt eine Lösung zum Vergleichen.

Bezug
        
Bezug
Tangenten an einem Kegel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 So 17.06.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de