www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Tangentengleichung
Tangentengleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Mi 05.12.2012
Autor: Krummel

Aufgabe
Die Tangente g geht durcht den Punkt P(0|2) und berüht den Graphen mit der Gleichung f(x)= 2-e^-x.
Gesucht ist der Berührungspunkt sowie die Tangentengleichung.

Als Ergebnisse habe ich g(x)= ex+2 und den Berührungspunkt B (-1|2-e)
Mein Lösungsweg:

Tangentengleichung
g(x)=mx+n
Punktsteigungsform:

g(xb)=m(xb-x0)+y0

m ist die erste Ableitung von xb in f
also m=f'(xb)=e^-x
x0=0
y0=2

dann gleichsetzen von g(x) und f(x)

e^-x(xb-0)+2=-e^-x+2 |-2 |: e^-x
xb=-1

xb in f(x)

[mm] f(xb)=2-e^1=2-e [/mm]

Berührpunkt B (-1|2-e)

Nun ist die Sache das wir es über die Punktsteigungsform lösen sollten und ich kein Ahnung habe wie.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Tangentengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Mi 05.12.2012
Autor: Adamantin

Ich verstehe deine Frage leider nicht. Die Punktsteigungsform einer Geraden braucht genau was der Name sagt: Einen Punkt und eine Steigung. Du hast einen Punkt gegeben, durch den die Tangente geht und ihre Steigung hast du aus der Ableitung von f korrekt berechnet. Jetzt brauchst du doch nur einsetzten? Also bitte konkretisiere deine Frage ;)

Bezug
                
Bezug
Tangentengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Mi 05.12.2012
Autor: Krummel

Als Ansatz hat man uns gesagt das wir nach xb umstellen sollten. Aber wenn ich nach xb in der Punktsteigungform umstelle habe ich mehr als eine Variable übrig.

Bzw. wir sollten doch bitte einen anderen Weg finden um auf die Lösung zu kommen.

Bezug
                        
Bezug
Tangentengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Mi 05.12.2012
Autor: Adamantin

Weil deine Punktsteigungsform falsch ist ;)

Für einen Punkt $P(u|v)$ gilt die Punktsteigungsform einer Geraden durch diesen Punkt:
$ [mm] f(x_p)=m*(x-u)+v$. [/mm]

Das heißt, du ziehst von x den x-Wert des Punktes ab und addierst am Ende den y-Wert des Punktes. Bei dir ist $u=0$ und $v=2$. Mit der Ableitung [mm] $f'(x)=e^{-x}$ [/mm] steht außerdem die Steigung fest, auch wenn wir ihren Betrag noch nicht kennen.

Abschließend müssen wir nur noch Gleichsetzten, um den Berührpunkt zu ermitteln:
$f(x)=t(x) [mm] \Rightarrow 2-e^{-x}=e^{-x}+2 \Rightarrow -e^{-x}=e^{-x}*x$ [/mm]

Wir dürfen durch [mm] $e^{-x}$ [/mm] dividieren, da dies niemals 0 wird:
$x=-1$. Dies ist der gesuchte Berührpunkt. Damit ergibt sich aber auch die Steigung der Tangenten zu:
[mm] $m=e^{-(-1)}=e$ [/mm]
Und die gesuchte Tangentengleichung lautet:
$t(x)=e*x+2$

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de