www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Tangentengleichung ermitteln
Tangentengleichung ermitteln < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentengleichung ermitteln: Problem: Ansatz...
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:27 Sa 07.01.2006
Autor: trollhorn

Aufgabe
Eine ganzrat. Funktion f hat eine 2. Ableitungsgleichung der Form

f"(x) = x - 1

Der Graph berührt die x - Achse in N(3/0).

b) Ermitteln Sie die Gleichung der Tangente t an den Graphen von f durch
die 1. Nullstelle der Funktion f

Im ersten Aufgabenteil habe ich durch 2 maliges integrieren die
Funktion f bestimmt

f(x) = 1/6 [mm] x^3 [/mm] - [mm] 1/2x^2 [/mm]

Meine Frage lautet nun: Wie bestimme ich die Tangentengleichung anhand
der gegebenen Hinweise?

Hab' mal so angefangen:

t(x) = mx + b

t(3) = 0 => m*3 + b = 0

Weiter komm ich leider net *schnief*...

        
Bezug
Tangentengleichung ermitteln: Alles falsch!
Status: (Antwort) fertig Status 
Datum: 13:40 Sa 07.01.2006
Autor: Disap


> Eine ganzrat. Funktion f hat eine 2. Ableitungsgleichung
> der Form
>  
> f"(x) = x - 1
>  
> Der Graph berührt die x - Achse in N(3/0).
>  
> b) Ermitteln Sie die Gleichung der Tangente t an den
> Graphen von f durch
>  die 1. Nullstelle der Funktion f

Hallo Trollhorn.

>  Im ersten Aufgabenteil habe ich durch 2 maliges
> integrieren die
> Funktion f bestimmt
>
> f(x) = [mm] 1/6^3- 1/2x^2 [/mm]
>  

[notok]
Nur durch zweimaliges Integrieren muss die Funktion auch nicht wirklich die gesuchte sein. Denn es gibt unendlich viele Stammfunktionen, wodurch sich dann auch die Nullstellen verschieben!
Korrekterweise wäre die richtige Lösung also zumindest f(x) = 1/6 [mm]x^3[/mm] - [mm][mm] 1/2x^2 [/mm] +cx +d
Aber in diesem Fall stimmt es ja. Zumindest, wenn man den Text nur ungenau liest!
Es ist die Bedingung gegeben, dass "Der Graph berührt die x - Achse in N(3/0)." Das heißt, es liegt eine doppelte Nullstelle bei x=3 vor, was wiederum heißt, die Funktion f(x) hat bei x=3 eine Nullstelle und ein Extremum:
f(3)=0
f'(3)=0


> Meine Frage lautet nun: Wie bestimme ich die
> Tangentengleichung anhand
> der gegebenen Hinweise?
>  
> Hab' mal so angefangen:
>  
> t(x) = mx + b
>
> t(3) = 0 => m*3 + b = 0


>  
> Weiter komm ich leider net *schnief*...

Naja, für die Tangente würde gelten:

y=mx+b
m = f'(der ersten Nullstelle) = Steigung an dieser Stelle x

Du hast nun also m und den Punkt der "Nullstelle"

[mm] \red{y}=mx+\red{b} [/mm]

Das in rot markierte wäre dann wohl noch bekannt.

Kommst du nun alleine weiter?

Viele Grüße Disap

Bezug
        
Bezug
Tangentengleichung ermitteln: Ansatz / Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:42 Sa 07.01.2006
Autor: trollhorn

Hab da gerade was ausgeknobelt:

Ausgehend von t(x) = mx + b

t(3) = 0 => m*3 + b = 0

Wendepunkt(e) bestimmen:

f"(x) = x - 1 => x = 1 W(1/0)

f'(1) = [mm] 1/2x^2 [/mm] - x => f'(1) = -1/2 => m = -1/2

M einsetzen in m*3 + b = 0 => b= 3/2

=> t(x) = -1/2x + 3/2



Bezug
        
Bezug
Tangentengleichung ermitteln: Okay, neuer Versuch Teil 1
Status: (Frage) beantwortet Status 
Datum: 16:54 Sa 07.01.2006
Autor: trollhorn

Also: f"(x) = x - 1
         f'(x) = [mm] 1/2x^2 [/mm] - x + c
         f(x) = [mm] 1/6x^3 [/mm] - [mm] 1/2x^2 [/mm] + cx + d

doppelte Nullstelle in N(3/0) => f(3) = 0
                                                  f'(3) = 0

f'(3) = 0 => 1/2*9 - 3 + c = 0 => c= - 3/2
c in f(x) einsetzen => d = 9/2

=> f(x) = [mm] 1/6x^3 [/mm] - [mm] 1/2x^2 [/mm] - 3/2x + 9/2

Aufgabenteil 1 ( hoffentlich!! ) erledigt!? Oder?


Bezug
                
Bezug
Tangentengleichung ermitteln: Stimmt!
Status: (Antwort) fertig Status 
Datum: 17:10 Sa 07.01.2006
Autor: Loddar

Hallo trollhorn!


[daumenhoch] Richtig!

Aufgabe a.) erledigt, auf zu b.) ...


Gruß
Loddar


Bezug
                
Bezug
Tangentengleichung ermitteln: Teil B *g*...
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:10 Sa 07.01.2006
Autor: trollhorn

Zum Aufgabenteil 2 hab' ich mir folgendes überlegt:

y = mx + b

m = f'(3) => f'(3) = 9 => m = -9

=> y= -9x + b

ausserdem ist bekannt:

f(3) = 0

-9*3 + b = 0 => b = 27

=> y = -9x + 27 ( Gleichung der Tangente )



Bezug
                        
Bezug
Tangentengleichung ermitteln: Teil B korrekt?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 07.01.2006
Autor: trollhorn

Bin jetzt mal gespannt, ob ich nun auch noch Teil B korrekt gelöst habe...
hab' ja kein so gutes Gefühl dabei...

Bezug
                        
Bezug
Tangentengleichung ermitteln: richtige Nullstelle?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:33 Sa 07.01.2006
Autor: Loddar

Hallo trollhorn!


Wie kommst Du denn auf die Steigung an der Stelle [mm] $x_0 [/mm] \ =\ 3$ . Hier erhalte ich (schließlich handelt es sich um eine doppelte Nullstelle!) : $f'(3) \ = \ 0$ !


Zudem denke ich, dass Du die Tangente an der anderen Nullstelle (die noch zu bestimmen wäre) ermitteln sollst.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de