www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Tangentengleichungsbestimmung
Tangentengleichungsbestimmung < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentengleichungsbestimmung: Korrektur, Tipps
Status: (Frage) beantwortet Status 
Datum: 19:47 Sa 06.10.2012
Autor: timelord

Aufgabe
Gegeben ist die Funktion [mm] f(x)=\bruch{1}{4}x^{4}. [/mm] Bestimme die Gleichung der Tangenten vom Punkt A(1/0) (nicht auf dem Graph) an den Graphen der Funktion.

Gegebend: f(x)= [mm] \bruch{1}{4}x^{4} [/mm]
Rechnung: [mm] f'(x)=\limes_{h\rightarrow\0}\bruch{f(x_{0}+h)-f(x_{0})}{h} [/mm]
                        [mm] =\limes_{h\rightarrow\0}\bruch{f(1+h)-f(1)}{h} [/mm]
                        [mm] =\limes_{h\rightarrow\0}\bruch{\bruch{1}{4}(1+h)^{4}-\bruch{1}{4}(1)^{4}}{h} [/mm]
                        [mm] =\limes_{h\rightarrow\0}\bruch{\bruch{1}{4}+\bruch{1}{4}h^{4}-\bruch{1}{4}}{h} [/mm]
                        [mm] =\limes_{h\rightarrow\0}\bruch{\bruch{1}{4}h^{4}}{h} [/mm]
                        [mm] =\limes_{h\rightarrow\0}\bruch{h(\bruch{1}{4}h^{3})}{h} [/mm]
                        [mm] =\limes_{h\rightarrow\0}\bruch{1}{4}h^{3} [/mm]
                        =0
limes:h gegen 0 (die Null steht in der Rechnung nicht hinter dem Pfeil).
Als ich die Parabel skizziert habe, wusste ich, dass die Tangente eine Steigung m>0 haben muss, aber ich kann meinen Fehler nicht finden. Es könnte auch sein, dass mein Ansatz falsch ist. Bitte keine vollständigen Rechnungen, nur Tipps oder Korrekturen zu Ansatz und Rechnung. Danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangentengleichungsbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Sa 06.10.2012
Autor: MathePower

Hallo timelord,


[willkommenmr]



> Gegeben ist die Funktion [mm]f(x)=\bruch{1}{4}x^{4}.[/mm] Bestimme
> die Gleichung der Tangenten vom Punkt A(1/0) (nicht auf dem
> Graph) an den Graphen der Funktion.
>  Gegebend: f(x)= [mm]\bruch{1}{4}x^{4}[/mm]
>  Rechnung:
> [mm]f'(x)=\limes_{h\rightarrow\0}\bruch{f(x_{0}+h)-f(x_{0})}{h}[/mm]
>                          
> [mm]=\limes_{h\rightarrow\0}\bruch{f(1+h)-f(1)}{h}[/mm]
> [mm]=\limes_{h\rightarrow\0}\bruch{\bruch{1}{4}(1+h)^{4}-\bruch{1}{4}(1)^{4}}{h}[/mm]
> [mm]=\limes_{h\rightarrow\0}\bruch{\bruch{1}{4}+\bruch{1}{4}h^{4}-\bruch{1}{4}}{h}[/mm]
>                          
> [mm]=\limes_{h\rightarrow\0}\bruch{\bruch{1}{4}h^{4}}{h}[/mm]
>                          
> [mm]=\limes_{h\rightarrow\0}\bruch{h(\bruch{1}{4}h^{3})}{h}[/mm]
>                          
> [mm]=\limes_{h\rightarrow\0}\bruch{1}{4}h^{3}[/mm]
>                          =0
>  limes:h gegen 0 (die Null steht in der Rechnung nicht
> hinter dem Pfeil).
>  Als ich die Parabel skizziert habe, wusste ich, dass die
> Tangente eine Steigung m>0 haben muss, aber ich kann meinen
> Fehler nicht finden. Es könnte auch sein, dass mein Ansatz
> falsch ist. Bitte keine vollständigen Rechnungen, nur
> Tipps oder Korrekturen zu Ansatz und Rechnung. Danke!


Zunächst ist doch  der Punkt (1|0) gegeben, der auf der Tangente liegt.

Dann weisst Du daß  der Punkt [mm]\left(x_{0}\left | \right f\left(x_{0}\right) \ \right)[/mm]
auf der Tangente mit Steigung [mm]f'\left(x_{0}\right)[/mm] liegt.

Damit sollte der Punkt [mm]x_{0}[/mm] ermittelt werden können.


>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Tangentengleichungsbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Sa 06.10.2012
Autor: timelord

Hallo Mathe Power,

Vielen Dank für deine Antwort. Deinen Gedankengang verstehe ich. Leider kann ich keine vernünftige Gleichung zur Ermittelung des Punktes [mm] x_{0} [/mm] aufstellen. Könntest du mir hier vllt. noch mal einen kleinen Ansatz geben?
Danke!

Gr. timelord

Bezug
                        
Bezug
Tangentengleichungsbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Sa 06.10.2012
Autor: Steffi21

Hallo,

du hast die Funktion [mm] f(x)=\bruch{1}{4}x^4, [/mm] die Tangente t(x)=m*x+n und den Punkt (1;0), es gilt

(1) [mm] \bruch{1}{4}x^4=m*x+n [/mm]
(2) [mm] x^3=m [/mm]
(3) 0=m+n somit n=-m

setze (2) und (3) in (1) ein

[mm] \bruch{1}{4}x^4=x^3*x-x^3 [/mm]

[mm] \bruch{1}{4}x^4=x^4-x^3 [/mm]

[mm] 0=\bruch{3}{4}x^4-x^3 [/mm]

[mm] 0=x^3*(\bruch{3}{4}x-1) [/mm]

du bekommst die Stellen [mm] x_1=0 [/mm] und [mm] x_2=\bruch{4}{3} [/mm]

Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de