www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Tangentialebene
Tangentialebene < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialebene: Übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 11:08 Di 28.08.2007
Autor: odin666

Aufgabe
Berechnen Sie die Gleichung der Tangentialebe an

f(a,b)= sin (a+b²) + ln ( e ^(cos a))

im Punkt

(a0 ; b0) = (Pi/2 , [mm] \wurzel{Pi} [/mm]

Hallo erstmal, ich habe ein Problem mit der oben genannten Aufgabe und zwar habe ich den Gradienten der Fkt. ausgerechnet und komme da auf:

gradf(Pi/2 ; [mm] \wurzel{Pi} [/mm] ) = ( -1 ; 0) dieser stimmt auch, nun wollte ich mit der Form:

z = gradf(x0) [mm] \circ [/mm] ( x - x0) + f(x0)  weiterrechnen.  [x0 soll ein vektor sein]

ich habe eine Lösung von der Aufgabe und meine Professorin hat das anders gemacht und zwar hat die den Normalenvektor der Tangentialebene bestimmt mit


n= [mm] \pmat{ -1 & 0 & -1 }. [/mm]

Nun ist meine Frage wie ich den Vektor hinbekomme, warum bekomme ich die -1 da unten noch??????

danach hat sie 2 Richtungsvektoren aufgestellt mit:


r1= [mm] \pmat{ -1 & 0 & 1 } [/mm] und r2= [mm] \pmat{ 0 & 1 & 0 }. [/mm]


Wie kommt man an dieses nochmal.
Vielen Dank für eure Antworten schonmal.

        
Bezug
Tangentialebene: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Di 28.08.2007
Autor: angela.h.b.


> Berechnen Sie die Gleichung der Tangentialebe an
>  
> f(a,b)= sin (a+b²) + ln ( e ^(cos a))
>  
> im Punkt
>  
> (a0 ; b0) = (Pi/2 , [mm]\wurzel{Pi}[/mm]
>  Hallo erstmal, ich habe ein Problem mit der oben genannten
> Aufgabe und zwar habe ich den Gradienten der Fkt.
> ausgerechnet und komme da auf:
>  
> gradf(Pi/2 ; [mm]\wurzel{Pi}[/mm] ) = ( -1 ; 0) dieser stimmt auch,
> nun wollte ich mit der Form:
>  
> z = gradf(x0) [mm]\circ[/mm] ( x - x0) + f(x0)  weiterrechnen.  [x0
> soll ein vektor sein]

Hallo,

wenn ich mich nicht verrechnet habe, erhältst Du daraus

z= -x + [mm] (\bruch{\pi}{2}-1) [/mm]

<==> 1- [mm] \bruch{\pi}{2}=-x [/mm] - z [mm] =\vektor{-1 \\ 0\\-1}*\vektor{x \\ y\\z}. [/mm]

Es ist also [mm] \vektor{-1 \\ 0\\-1} [/mm] der Normalenvektor der Ebene, und das ist genau der, den Deine Professorin auch hat.


Gruß v. Angela

Bezug
                
Bezug
Tangentialebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:29 Di 28.08.2007
Autor: odin666

Gut, das hab ich verstanden, aber wie komm ich davon nochmal auf die richtungsvektoren, im 2dim fall konnt man die zahlen tauschen und eine negieren, is schon was länger her dass ich das gemacht hab....

gruss

Bezug
                        
Bezug
Tangentialebene: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Di 28.08.2007
Autor: angela.h.b.


> Gut, das hab ich verstanden, aber wie komm ich davon
> nochmal auf die richtungsvektoren, im 2dim fall konnt man
> die zahlen tauschen und eine negieren, is schon was länger
> her dass ich das gemacht hab....

Du mußt nun 2 unabhängige Vektoren finden, die senkrecht zum Normalenvektor  [mm] \vektor{-1 \\ 0\\-1} [/mm] sind.

Senkrecht erkennt man daran, daß das Skalarprodukt =0 ist. Also mußt Du solche unabhängigen Vektoren [mm] \vektor{a \\ b\\c} [/mm] suchen  mit

0= [mm] \vektor{-1 \\ 0\\-1}* \vektor{a \\ b\\c}= [/mm] -a - c =-(a+c).

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de