www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Tangentialräume
Tangentialräume < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialräume: Produktmannigfaltigkeit
Status: (Frage) überfällig Status 
Datum: 19:29 So 17.07.2011
Autor: mikexx

Aufgabe
Hallo, liebe Helferinnen & Helfer!

Ich möchte gerne mal wissen, ob ich bei folgendem Beweisversuch richtig liege.

Die Aufgabe:

Sei [mm]M\subseteq \IR^n[/mm] eine k-dimensionale Untermannigfaltigkeit und sei [mm]N\subseteq \IR^n[/mm] eine l-dimensionale Untermannigfaltigkeit. Zudem seien [mm]a\in M, b\in N [/mm].

Man zeige für die Tangentialräume:

[mm]T_{(a,b)}(M\times N)=T_a(M)\times T_b(N)[/mm]

Hier mein Beweis:

Zunächstmal ist [mm]M\times N [/mm] eine (k+l)-dimensionale Untermannigfaltigkeit. Das zeige ich nicht, weil ich es schon auf einem vorherigen Übungszettel mal gezeigt hatte.

Sei [mm]\theta:U\to V\subseteq \IR^{2n}[/mm] (U offen in [mm]\IR^{k+l}[/mm] und V offen in [mm]\IR^{2n}[/mm] ) eine Karte für [mm]M\times N[/mm] und [mm]\theta(c)=(a,b)[/mm].

Nach einem Satz aus O. Forster und der Vorlesung bilden dann

[mm]\frac{\partial \theta}{\partial t_1}(c),\hdots ,\frac{\partial \theta}{\partial t_{k+l}}(c) [/mm] eine Basis von [mm]T_{(a,b)}(M\times N)[/mm].

Nun kann man doch aber diese Basis in zwei "Teile" aufteilen: die Vektoren, die aus [mm]T_a(M)[/mm] stammen bzw. diesen Raum erzeugen und die Vektoren, die aus [mm]T_b(N)[/mm] stammen bzw. diesen Raum erzeugen:

Also:

[mm]T_{(a,b)}(M\times N)=<\frac{\partial \theta}{\partial t_1}(c),\hdots ,\frac{\partial \theta}{\partial t_{k+l}}(c)>=<\frac{\partial \theta}{\partial t_1}(c),\hdots ,\frac{\partial \theta}{\partial t_k}(c)> \times <\frac{\partial \theta}{\partial t_{k+1}}(c),\hdots ,\frac{\partial \theta}{\partial t_{k+l}}(c)>=T_a(M)\times T_b(N) [/mm].

q.e.d.

So, das wäre meine Idee; wenn jemand ein Feedback gibt, würde mich das sehr freuen!

Danke für jede Mühe!

        
Bezug
Tangentialräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 So 17.07.2011
Autor: mikexx

Ich sehe gerade, dass man es bestimmt noch sauberer formulieren könnte, indem man jeweils für M, N und MxN eine Karte angibt (und jeweils ein Urbild für a,b und (a,b)) und dann die Karte von MxN aus den beiden anderen Karten zusammensetzt.

Aber ich hoffe trotzdem, dass meine Idee grundlegend stimmt.

Bezug
        
Bezug
Tangentialräume: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 19.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de