www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Taylor-Formel
Taylor-Formel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor-Formel: Tipp/Korrektur
Status: (Frage) überfällig Status 
Datum: 03:31 Di 07.06.2011
Autor: Quadratur

Aufgabe
(a) Es sei [mm] $U\in\IR^n$ [/mm] offen und [mm] $x\in [/mm] U$. Es sei [mm] $f:U\to\IR$ [/mm] eine zweimal partiell differenzierbare Funktion. Zeigen Sie, dass

[mm] q_2(\xi)=\bruch{1}{2}\summe_{i=1}^{n}\summe_{j=1}^{n}\bruch{\partial^2}{\partial_{x_i}\partial_{x_j}}f(x)*\xi_i\xi_j [/mm]

(b) Wir können nun [mm] p_2(\xi)=q_0(\xi) [/mm] + [mm] q_1(\xi) [/mm] + [mm] q_2(\xi) [/mm] als Funktion [mm] U\to\IR [/mm] auffassen. Zeigen Sie, dass für alle [mm] i,j\in\{1,...,n\} [/mm] gilt:

[mm] \bruch{\partial^2}{\partial_{x_i}\partial_{x_j}}f(x)=\bruch{\partial^2}{\partial_{x_i}\partial_{x_j}}p_2(0) [/mm]

Hinweis: Es ist hilfreich die Notation [mm] p_2(x_1,...,x_n) [/mm] anstatt [mm] p_2(\xi_1,...,\xi_n) [/mm] zu verwenden. Unterscheiden Sie zudem die Fälle i=j und [mm] i\not=j [/mm]

Hallo liebe Gemeinde,

bei der 1. Teilaufgabe bin ich mir recht sicher, dass ich sie richtig gemacht habe und führe diese deshalb nicht auf. Bei der 2. Teilaufgabe habe ich garantiert einen Denkfehler. Ich hoffe ihr könnt mir dabei helfen den Knoten in meinem Kopf lösen :)

Aus der Vorlesung wissen wir, dass:

[mm] q_0(\xi)=f(x) [/mm]

[mm] q_1(\xi)=\summe_{i=1}^{n}\bruch{\partial}{\partial_{x_i}}f(x)*\xi_i [/mm]

[mm] q_2(\xi)=\bruch{1}{2}\summe_{i=1}^{n}\summe_{j=1}^{n}\bruch{\partial^2}{\partial_{x_i}\partial_{x_j}}f(x)*\xi_i\xi_j [/mm]

Demnach ist doch [mm] p_2(0)=f(x), [/mm] weil [mm] q_1(0)=q_2(0)=0 [/mm] und [mm] q_0(0)=f(x) [/mm] sind ... Dann wäre man doch eigentlich direkt am Ziel?!

Mit dem Hinweis kann ich ehrlich gesagt nicht so viel anfangen ... Ich hoffe ihr könnt mir dabei helfen diese Aufgabe zu lösen bzw. mein Verständnisproblem zu beheben.

Lieben Dank und beste Grüße,
Alex

P.S.: Die Definition der Taylor-Formel ist ähnlich der Definition aus dem Forster Analysis 2. Leider hat der Dozent vergessen die Herkunft von [mm] \xi [/mm] zu erwähnen ...

        
Bezug
Taylor-Formel: Korrektur
Status: (Frage) überfällig Status 
Datum: 01:08 Mi 08.06.2011
Autor: Quadratur

Hallo Matheraum,

ich wollte euch nur einmal kurz meine Lösung zu der ersten Teilaufgabe zeigen, um zu erfragen, ob diese richtig ist. Also:

Wir hatten [mm] $q_m(\xi):=\summe_{|\alpha|=m}\bruch{D^{\alpha}f(x)}{\alpha!}\xi^{\alpha}$ [/mm]

Wir betrachten also den Fall m=2:
Die einzigen Vektoren [mm] $\alpha\in\IN$ [/mm] mit [mm] $|\alpha|=2$, [/mm] sind für i<j die Vektoren:

[mm] \alpha=e_i+e_j [/mm] mit [mm] 1\le [/mm] i<j [mm] \le [/mm] n und für i=j die Vektoren:
[mm] \alpha=2e_i [/mm]

Somit ist:

[mm] q_2(\xi)=\summe_{i=1}^n\bruch{D^{2e_i}f(x)}{2e_i!}\xi^{2e_i} [/mm] + [mm] \summe_{i=1}^{j-1}\summe_{j=i+1}^{n}\bruch{D^{e_i+e_j}f(x)}{(e_i+e_j)!}\xi^{e_i+e_j} [/mm]
[mm] =\bruch{1}{2}\summe_{i=1}^n\bruch{\partial^2f}{\partial x_i^2}(x)\cdot\xi_i^2 [/mm] + [mm] \summe_{i=1}^{j-1}\summe_{j=i+1}^{n}\bruch{\partial^2f}{\partial x_i\partial x_j}(x)\cdot\xi_i\xi_j [/mm]
[mm] =\bruch{1}{2}\summe_{\substack{i=1 \\ i=j}}^n\summe_{\substack{j=1 \\ j=i}}^n\bruch{\partial^2f}{\partial x_i\partial x_j}(x)\cdot\xi_i\xi_j [/mm] + [mm] \bruch{1}{2}\summe_{\substack{i=1 \\ i\not= j}}^n\summe_{\substack{j=1 \\ j\not=i}}^n\bruch{\partial^2f}{\partial x_i\partial x_j}(x)\cdot\xi_i\xi_j [/mm]
[mm] =\bruch{1}{2}\summe_{i=1}^{n}\summe_{j=1}^{n}\bruch{\partial^2}{\partial x_i\partial x_j}f(x)\cdot\xi_i\xi_j [/mm]

Habe mir bei der einen Summe gedacht, dass aufgrund der Tatsache, dass [mm] f:U\to\IR [/mm] zweimal partiell stetig differenzierbar ist gelten muss:

[mm] \summe_{i=1}^{j-1}\summe_{j=i+1}^{n}\bruch{\partial^2f}{\partial x_i\partial x_j}(x)\cdot\xi_i\xi_j [/mm] = [mm] \summe_{j=1}^{i-1}\summe_{i=j+1}^{n}\bruch{\partial^2f}{\partial x_i\partial x_j}(x)\cdot\xi_i\xi_j [/mm] = [mm] \bruch{1}{2}\summe_{\substack{i=1 \\ i\not= j}}^n\summe_{\substack{j=1 \\ j\not=i}}^n\bruch{\partial^2f}{\partial x_i\partial x_j}(x)\cdot\xi_i\xi_j [/mm]

Ist das richtig???

Zum Aufgabenteil (b) bräuchte ich leider immer noch Hilfe, siehe den Beitrag von oben ... Da habe ich scheinbar irgendeinen Denkknoten, der sich nicht lockern möchte :)

Viele Grüße,
Alex

Bezug
                
Bezug
Taylor-Formel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Fr 10.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Taylor-Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:24 Mi 08.06.2011
Autor: Quadratur

Ich glaube ich habe meinen Denkfehler in der 2. Teilaufgabe beseitigen können. Man musste das Polynom anders aufschreiben und dann einfach nur die partiellen Ableitungen für die Fälle i=j und [mm] i\not=j [/mm] ausrechnen und siehe da, dann kommt tatsächlich das richtige Ergebnis zum Vorschein :)

Bezug
        
Bezug
Taylor-Formel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:20 Do 09.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de