www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylor-Polynom
Taylor-Polynom < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor-Polynom: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:45 Mo 03.09.2007
Autor: ragsupporter

Aufgabe
Für folgende Funktionen ermittle und skizziere man die TAYLOR-Polynome der Ordnung m in [mm]x_0 = 0[/mm]:

a) f(x)=sin(x), m=1,3,5
b) g(x)=sinh(x), m=1,3,5
c) h(x)= cosh(x), m=0,2,4

Hallo,

Hab da mal zwei Fragen:

1. Sind die folgenden Ergebnisse richtig?
2. Wie kann ich die Taylor-Polynome nun skizzieren?

__________________________________________________________

a) [mm] \sin(x)=0+ (\bruch{1}{1!})*(x-0)+((\bruch{-1}{3!})*(x-0)^3)+((\bruch{1}{5!})*(x-0)^5)[/mm] [mm]= x- \bruch{x^3}{3!}+\bruch{x^5}{5!}=\summe_{n=0}^{\infty}(-1)^n*\bruch{x^{2n+1}}{(2n+1)!}[/mm]


b) [mm] \sinh(x)=0+ (\bruch{1}{1!})*(x-0)+((\bruch{1}{3!})*(x-0)^3)+((\bruch{1}{5!})*(x-0)^5)[/mm]
[mm]= x+ \bruch{x^3}{3!}+\bruch{x^5}{5!}=\summe_{n=0}^{\infty}\bruch{x^{2n+1}}{(2n+1)!}[/mm]

c)  [mm] \cosh(x)=1+ (\bruch{1}{1!})*(x-0)+((\bruch{1}{2!})*(x-0)^2)+((\bruch{1}{4!})*(x-0)^4)[/mm]
[mm]= 1+x+ \bruch{x^2}{2!}+\bruch{x^4}{4!}=\summe_{n=0}^{\infty}\bruch{x^{2n}}{(2n)!}[/mm]


Danke Markus

        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Mo 03.09.2007
Autor: leduart

Hallo
Die Reihen sind richtig, ausser dass du sie ja für m=1, 3 ,5 einzeln hinschreiben solltesst, und nicht dein Ende bis [mm] \infty. [/mm]
Da die gefragten Polynome  ja ne Gerade, Pol. 3. und 5-ten Grades sind, sollst du die einfach zeichnen, oder mit nem Funktionsplotter dir ansehen.
Gruss leduart

Bezug
                
Bezug
Taylor-Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 03.09.2007
Autor: ragsupporter

danke für die schnelle antwort.

aso alles klar. aber wie ich die funktion zeichne ist mir trotzdem net so ganz klar.

Bezug
                        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Mo 03.09.2007
Autor: Bastiane

Hallo ragsupporter!

> danke für die schnelle antwort.
>  
> aso alles klar. aber wie ich die funktion zeichne ist mir
> trotzdem net so ganz klar.

Na, im ersten Fall ist das Taylor-Polynom ersten Grades wohl nur das x - das zweiten Gerades dann das x zusammen mit dem [mm] x^3 [/mm] - war das [mm] x-x^3 [/mm] oder so ähnlich? Und dann das 5.Grades genau alles zusammen. Eine Gerade wirst du ja wohl zeichnen können - und für die anderen beiden Fälle musst du halt einfach eine Art Wertetabelle machen - oder du nimmst einen FUNKTIONENPLOTTER! Das sollte in der Uni eigentlich erlaubt sein - da kann man ja nicht die krummsten Funktionen mit der Hand zeichnen - ansonsten lässt du sie dir plotten und zeichnest sie ab.

Ein Beispiel wäre z. B. auch []das hier - Prinzip der Taylorpolynome ist ja, dass sie - je mehr Summanden man ausrechnet - die Funktion immer genauer approximieren. Und das sieht man ganz schön, wenn man sie so der Reihe nach plottet. :-)

Viele Grüße
Bastiane
[cap]

Bezug
                                
Bezug
Taylor-Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Mo 03.09.2007
Autor: ragsupporter

ah danke ich glaub jetzt geht mir ein licht auf... =)

Bezug
        
Bezug
Taylor-Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Mo 03.09.2007
Autor: rainerS

Hallo Markus,

du hast einen Schreibfehler:

> c)  [mm]\cosh(x)=1+ (\bruch{1}{1!})*(x-0)+((\bruch{1}{2!})*(x-0)^2)+((\bruch{1}{4!})*(x-0)^4)[/mm]
>  
> [mm]= 1+x+ \bruch{x^2}{2!}+\bruch{x^4}{4!}=\summe_{n=0}^{\infty}\bruch{x^{2n}}{(2n)!}[/mm]

Die Summe am Schluss ist richtig, aber der zweite Term (x) ist zuviel:
[mm]\cosh x = 1 + \bruch{x^2}{2!}+\bruch{x^4}{4!} + \dots[/mm]

Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de