www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylor-Reihe
Taylor-Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor-Reihe: max. Fehler für sin0.5 = b
Status: (Frage) beantwortet Status 
Datum: 22:10 Di 21.04.2009
Autor: carlosfritz

Aufgabe
f(x)=sin(x). Man gebe die Taylorsche Formel mit Restglied  für f bei Entwicklung um den Punkt [mm] x_{0}=0 [/mm] an und berechne damit den Wert von sin(0.5) bis auf einen Fehler von max. [mm] 0.5*10^{-4} [/mm]

Hallo,
Die Taylor-Reihe aufstellen ist kein Problem, genau wie das Restglied.

Meine Idee ist folgende:

Das Restglied [mm] R_{n+1}(x) [/mm] = [mm] \bruch{f(\beta)^{n+1}}{(n+1)!} [/mm] * [mm] x^{n+1} [/mm] wird maximal, wenn a.) die n+1 Ableitung von sinus = cosinus ist, da [mm] 0<\beta b.) [mm] \beta [/mm] am größten ist

Nun hätte ich

[mm] \bruch{cos(\beta)}{(n+1)!} [/mm] * [mm] (0.5)^{n+1} \le 0.5*10^{-4} [/mm]

Ferner gilt:


[mm] \bruch{cos(\beta)}{(n+1)!} [/mm] * [mm] (0.5)^{n+1} \le 0.5*10^{-4} [/mm] mit [mm] \beta [/mm] = [mm] 0.5*10^{-4} [/mm]

Dann habe ich:


[mm] \bruch{ (0.5)^{n+1}}{(n+1)!} \le \bruch{0.5*10^{-4}}{cos(\beta)} [/mm]

Wie komme ich nun an n ran ohne das auszuprobieren?

Oder kann es eher sein, dass der Weg komplett falsch ist?

Gruß und schonmal Danke für die Hilfen :)

        
Bezug
Taylor-Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Mi 22.04.2009
Autor: leduart

Hallo
Du hattest  geschrieben, dass [mm] cos(\beta) [/mm]  bei [mm] \beta=0.5 [/mm] am groessten ist.
das ist falsch [mm] cos(0)=1>cos(\beta) [/mm] fuer alle [mm] \beta \in [/mm] (0,0.5]
die Ungleichung gilt nicht, sondern du willst ein n finden, so dass sie gilt. also setze das schlimmst moegliche [mm] \beta [/mm]  aus dem Intervall ein also [mm] cos(\beta)=1 [/mm]

>$ [mm] \bruch{cos(\beta)}{(n+1)!} [/mm] $ * $ [mm] (0.5)^{n+1} \le >0.5\cdot{}10^{-4} [/mm] $ mit $ [mm] \beta [/mm] $ = $ [mm] 0.5\cdot{}10^{-4} [/mm] $
wie du hier auf $ [mm] \beta [/mm] $ = $ [mm] 0.5\cdot{}10^{-4} [/mm] kommst ist mir schleierhaft.
es gilt sicher in dem betrachteten Intervall

$ [mm] \bruch{cos(\beta)}{(n+1)!} [/mm] $ * $ [mm] (0.5)^{n+1} \le \bruch{1}{(n+1)!}*(0.5)^{n+1} [/mm] $

das jetzt kleiner  [mm] 0.5\cdot{}10^{-4} [/mm] setzen und n ausrechnen.
Gruss leduart

Bezug
                
Bezug
Taylor-Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:33 Mi 22.04.2009
Autor: carlosfritz

Hallo und vielen Dank nochmals.

Was mich da geritten hat, wieso ich nicht sage, dass mein Restglied am größten ist, wenn [mm] \beta [/mm] = 0 ist, kann ich auch nicht mehr sagen; evtl mit sinus vertauscht???

okay, das ist nun klar.

Was noch unklar ist:

[mm] (0.5)^{n+1} \le \bruch{1}{(n+1)!}\cdot{}(0.5)^{n+1} [/mm] ist das links nicht sogar echt kleiner, da nach dem Lagrange Restglied gilt [mm] 0<\beta
[mm] 0.5\cdot{}10^{-4} [/mm] < [mm] \bruch{1}{(n+1)!}\cdot{}(0.5)^{n+1} [/mm]

das dies gilt erschließt sich mir auch. Aber wie komme ich an das n ran?

Ich weiss nicht, wie ich mit dem (n+1)! umgehe. Kannst du mir da einen Tip geben?

Bezug
                        
Bezug
Taylor-Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 01:04 Mi 22.04.2009
Autor: leduart

Hallo
>  
> Was noch unklar ist:
>  
> [mm](0.5)^{n+1} \le \bruch{1}{(n+1)!}\cdot{}(0.5)^{n+1}[/mm] ist das

das ist einfach falsch fuer alle n>0

> links nicht sogar echt kleiner, da nach dem Lagrange
> Restglied gilt [mm]0<\beta
> abgeschrieben und es gilt [mm]0\le\beta\le[/mm] x ?

soweit ich mich erinnere ist das [mm] \le [/mm] kann mich aber irren.

> [mm]0.5\cdot{}10^{-4}[/mm] < [mm]\bruch{1}{(n+1)!}\cdot{}(0.5)^{n+1}[/mm]

du willst doch das umgekehrte!
[mm]0.5\cdot{}10^{-4}[/mm] < [mm]\bruch{1}{(n+1)!}\cdot{}(0.5)^{n+1}[/mm]

> das dies gilt erschließt sich mir auch. Aber wie komme ich
> an das n ran?
>  
> Ich weiss nicht, wie ich mit dem (n+1)! umgehe. Kannst du
> mir da einen Tip geben?

ich wuerde durch 0.5 teilen, dann log anwenden
-4=n*log0.5-log((n+1)!)
log(n+1)!=log(n+1)+log(n)+...log1
(log zur Basis 10)
Dann einfach ein paar Werte fuer n  einsetzen.
kannst du aber auch direkt in die Anfangsformel.
Besseres faellt mir grad nicht ein, aber du musst wohl nur 4 5 und 6 einsetzen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de