www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Taylor
Taylor < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor: Herleitung
Status: (Frage) beantwortet Status 
Datum: 16:46 Mo 07.07.2008
Autor: Blueevan

Hallo!
Kann mir jemand mit Hilfe von Taylor herleiten, wie ich auf die Approximation [mm] u''(x)=\bruch{1}{h²}(u(x+h)-2u(x)+u(x-h))+O(h²) [/mm] komme?
Ich krieg das irgendwie nicht hin...
Um welchen Punkt entwickelt man hier überhaupt?
Danke und viele Grüße,
Blueevan

        
Bezug
Taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Mo 07.07.2008
Autor: Merle23

Ich glaube hier wurde nicht der Taylor, sondern der Differenzenquotient benutzt, um auf den Ausdruck zu kommen.

Bezug
                
Bezug
Taylor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Mo 07.07.2008
Autor: Blueevan

Danke für die schnelle Antwort. Man kann das mit dem Differenzenquotienten herleiten (bis auf das 0(h²)) Das habe ich auch verstanden. Aber laut unserer Vorlesung geht das auch mit Taylor. Kann mir da vielleicht jemand weiterhelfen?
Viele Grüße,
Blueevan

Bezug
                        
Bezug
Taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Mo 07.07.2008
Autor: max3000

@ merle: taylor bis zum 1. grad aufstellen und nach f' umstellen ergibt gerade den differenzenquotienten.

und genau das musst du hier auch machen

[mm] f(x+h)=f(x)+f'(x)h+\bruch{1}{2}f''(x)*h^2+O(h^3) [/mm]

Das stellst du nach f'' um

Eventuell musst du das selbe nochmal an der Stelle x-h machen

[mm] f(x-h)=f(x)-f'(x)h+\bruch{1}{2}f''(x)*h^2+O(h^3) [/mm]

Für f'(x) setzt du dann die Ableitungen ein, die ihr sicherlich schon in der Vorlesung gehabt habt. Also entweder den Vorwärts- rückwärts oder gemischten Differenzenquotienten. Dann aus dem oben berechneten f'' und untern berechneten f'' den Mittelwert bilden (1/2(f''+f'')) und dann müsste es irgendwie gehen. versuchs mal und sag bescheid wenns doch nicht klappt. da denk ich mir was neues aus.

Ich hoffe das hilft dir hier weiter.

Schönen Gruß

Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de