www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Taylor
Taylor < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Mo 10.01.2011
Autor: Bilmem

Aufgabe
a)Bestimmen Sie für die Funktion

[mm] f(x)=exp(2-(1/2)x^2), [/mm] x [mm] \in \I, [/mm]

und die Entwicklungsstelle x0=-2 die Taylor-Polynome T0(x), T1(x), T2(x) und T3(x)

b) Zeichnen Sie zwei Diagramme, in die Sie den Graphen von f(x) sowie alle Graphen von T0(x), T1(x), T2(x), T3(x) gemeinsam eintragen und zwar einmal über dem Intervall (-3,-1) und einmal über dem Intervall (-7,3)

c) Ist f: [mm] \IR [/mm] --> [mm] \IR [/mm] nach unten beschränkt? Ist f: [mm] \IR [/mm] --> [mm] \IR [/mm] nach oben beschränkt? Sind die Tj: [mm] \IR [/mm] --> [mm] \IR, [/mm] j= 0,1,2,3, nach unten beschränkt? Sind die Tj: [mm] \IR [/mm] --> [mm] \IR, [/mm] j= 0,1,2,3, nach oben beschränkt? Begründen Sie Ihre Antworten.

Ich weiß nicht, wie ich vorgehen soll. Ich bereite mich im Moment auf meine Klausur vor und komme beim Üben mit der folgenden Aufgabe nicht klar. Für Ansätze wäre ich sehr dankbar. Danke schonmal.

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Mo 10.01.2011
Autor: fred97

Das mußt Du doch gehabt haben: das n-te Taylorpolynom an der Entwicklungstelle [mm] x_0 [/mm] ist

               $ [mm] T_n(x) [/mm] = [mm] \sum_{k=0}^n {f^{(k)}(x_0) \over k!}(x-x_0)^k$ [/mm]

Nun mußt Du doch nur noch rechnen !

FRED

Bezug
                
Bezug
Taylor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:37 Mo 10.01.2011
Autor: Bilmem

Ich war eine lange Zeit aus gesundheitlichen Gründen nicht in den Vorlesungen, deshalb habe ich den Faden verloren, könntest du mir vielleicht erklären, wie ich das berechne?

Bezug
                        
Bezug
Taylor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 Mo 10.01.2011
Autor: Bilmem

Kann mir bitte jemand helfen?:(

Bezug
        
Bezug
Taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Mo 10.01.2011
Autor: Scharii

[mm] T_n(x) [/mm] = [mm] \sum_{k=0}^n {f^{(k)}(x_0) \over k!}(x-x_0)^k [/mm]

[mm] f^{(k)} [/mm] ist die k-te ableitung.

Für [mm] T_0(x) [/mm] = [mm] \frac{f(x_0)}{ 0!} [/mm] = [mm] f(x_0)=f(-2) [/mm]
mit [mm] x_0= [/mm] -2

Für [mm] T_1(x)= \frac{f(x_0)}{ 0!} [/mm] + [mm] \frac{f^{1}(x_0)}{1!} (x-x_0)= f(x_0)+ f^{1}(x_0)(x-x_0)=f(-2)+f^{1}(-2)(x-(-2)) [/mm]

Für [mm] T_2(x) [/mm] ebenso weiter...

Hoffe das hilft.

Deine Aufgabe ist da das ableiten von f, und das ausrechnen am konkreten Punkt -2

Damit kannst du dann die Graphen zeichnen (und hoffentlich die (un)-beschränktheit der Funktionen sehen)

Bezug
                
Bezug
Taylor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Mo 10.01.2011
Autor: Bilmem

Für T3(x)= f(x0)/0! + [mm] f^1 [/mm] (x0)/ 1! (x-x0) + [mm] f^2(x0)/ [/mm] 2! (x-x0) = [mm] f(x0)+f^1(x0)(x-x0)+f^2 [/mm] (x0) (x-x0) = f(-2) + [mm] f^1(-2)(x-(-2))+f^2(-2)(x-(-2)) [/mm]

Ist das so richtig? Übrigens vielen Dank, ich habe es verstanden :)

zu b) muss ich für x beliebige Zahlen einsetzen und dann den Graphen zeichnen?

Bezug
                        
Bezug
Taylor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Mo 10.01.2011
Autor: Bilmem

Muss ich bei a) die Ableitungen bilden und dann die Entwicklungsstelle x0=-2 jeweils in die Ableitungen einsetzen ?

Bezug
                                
Bezug
Taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Mo 10.01.2011
Autor: MathePower

Hallo Bilmem,

> Muss ich bei a) die Ableitungen bilden und dann die
> Entwicklungsstelle x0=-2 jeweils in die Ableitungen
> einsetzen ?


Ja.


Gruss
MathePower

Bezug
                        
Bezug
Taylor: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Mo 10.01.2011
Autor: MathePower

Hallo Bilmem,

> Für T3(x)= f(x0)/0! + [mm]f^1[/mm] (x0)/ 1! (x-x0) + [mm]f^2(x0)/[/mm] 2!
> (x-x0) = [mm]f(x0)+f^1(x0)(x-x0)+f^2[/mm] (x0) (x-x0) = f(-2) +
> [mm]f^1(-2)(x-(-2))+f^2(-2)(x-(-2))[/mm]
>  
> Ist das so richtig? Übrigens vielen Dank, ich habe es
> verstanden :)


So ist das richtig:

[mm]T_{3}\left(x\right)=f\left(-2\right)+f^{\left(1\right)}\left(-2\right)*\left( \ x-\left(-2\right) \ \right)+\bruch{f^{\left(2\right)}\left(-2\right)}{2}*\left( \ x-\left(-2\right) \ \right)^{2}+\bruch{f^{\left(3\right)}\left(-2\right)}{6}*\left( \ x-\left(-2\right) \ \right)^{3}[/mm]


>  
> zu b) muss ich für x beliebige Zahlen einsetzen und dann
> den Graphen zeichnen?


Ja, das ist sinnvoll.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de