www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylor Reihe- geom. Reihe
Taylor Reihe- geom. Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor Reihe- geom. Reihe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:11 So 11.01.2009
Autor: wee

Aufgabe
Berechne [mm] \bruch{d^{2008}}{dx^{2008}}\bruch{1}{1+x^2} [/mm] für x=0

Hallo,

zu der Aufgabe habe ich einige Ideen, die ich aber nicht zu einer Lösung verbinden kann.

Zum einen kann man ja [mm] \bruch{1}{1+x^2}=\summe_{k=0}^{\infty}x^{2k} [/mm] schreiben.

Diese Reihe ist aber doch auch die Taylorreihe der Funktion [mm] \bruch{1}{1+x^2}. [/mm]

Jetzt betrachte ich die Taylorreihenentwicklung bis zum 2008-ten Glied, dann ist [mm] \bruch{d^{2008}}{dx^{2008}}\bruch{1}{1+x^2}= \bruch{1}{1+x^2}-\summe_{k=0}^{2007}x^{2k}+ [/mm] Restglied

WEnn ich da jetzt x=0 setzte, wird die Summe 0. also ist [mm] \bruch{d^{2008}}{dx^{2008}}\bruch{1}{1+x^2}=1+Restglied [/mm] bei x=0.

Stimmt das, oder wie löst man das sonst?

Und was ist hier das Restglied, muss das denn beachtet werden?


Ich bin für jede Hilfe dankbar!

        
Bezug
Taylor Reihe- geom. Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 So 11.01.2009
Autor: Event_Horizon

Hallo!

Prinzipiell ist dein Weg gut, aber dann verhaspelst du dich.

$ [mm] \bruch{d^{2008}}{dx^{2008}}\bruch{1}{1+x^2} =\bruch{d^{2008}}{dx^{2008}} \summe_{k=0}^{\infty}x^{2k} [/mm] $

Jetzt sind zwei Dinge klar:

Mit jeder Ableitung verringert sich die Potenz um 1. Demnach werden alle Summanden der Taylor-Reihe mit 2k<2008 gleich 0 werden.

Auch die Potenzen der Summanden mit 2k>2008 werden immer kleiner, allerdings enthalten sie mindestens den Faktor x, sodaß sie durch die Bedingung x=0 verschwinden. Das war dein Restterm.

Es bleibt der Term mit 2k=2008, dieser ergibt nach den ganzen Ableitungen einen konstanten Summanden, und der ist NICHT gleich 1.

Bezug
        
Bezug
Taylor Reihe- geom. Reihe: kleine Korrektur
Status: (Antwort) fertig Status 
Datum: 23:40 So 11.01.2009
Autor: Loddar

Hallo wee!


Es muss aber lauten:
[mm] $$\bruch{1}{1+x^2} [/mm] \ = \ [mm] \bruch{1}{1-\left(-x^2\right)} [/mm] \ = \ [mm] \summe_{k=0}^{\infty}\left(\red{-}x^2\right)^k [/mm] \ = \ [mm] \summe_{k=0}^{\infty}(-1)^k*x^{2k}$$ [/mm]

Gruß
Loddar


Bezug
        
Bezug
Taylor Reihe- geom. Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Mo 12.01.2009
Autor: fred97

Ist f(x) =  [mm] \summe_{k=0}^{\infty}a_k x^{k} [/mm] ,

so gilt: [mm] f^{(n)}(0) [/mm] = [mm] $a_n [/mm] n!$


In Deinem Fall ist, siehe Antwort von Loddar:

[mm] f^{(2008)}(0) [/mm] = $2008!$


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de