www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylorentwicklung
Taylorentwicklung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Di 10.06.2008
Autor: mikemodanoxxx

Aufgabe
[Dateianhang nicht öffentlich]

Hallo,

ich habe alle Ableitungen und meinen Entwicklungspunkt (-2,3) dort eingesetzt.

fx(-2,3) = 1
fyyx(-2,3) = 2 = fxyy(-2,3) müsste ja das gleiche sein nach dem Satz von Schwarz

Alle anderen Ableitungen werden an dieser Stelle 0.

Mein Problem ist, dass wir eine Formel mit dem Multiindex [mm] \alpha. [/mm] Mir scheint nicht ganz klar zu sein, was dieser eigentlich bedeutet. Wenn ich mir eine Lösung aus einer alten Aufgabe anschaue, bei der bei dieser dritten Ableitung auch 2 herauskam, müsste meine Funktion lauten:
[mm] f(x,y)=x+2+(x+2)^{2}(y-3) [/mm]

Mir ist klar, dass dieser Multiindex dazu da ist, diese ganzen gleichen Ableitungen (Ableiten nach yyx, xyy, yxy) nur einmal hinschreiben zu müssen, um Übersicht über die vielen Therme zu haben. Aber wie man die konkret berechnet verstehe ich nicht so ganz. Es wäre ganz cool wenn mir das jemand erklären könnte.

Ich hatte mir das nur so überlegt: Wenn man die Glieder einzeln hinschreiben würde hätte man ja wegen der 3. Ordnung in jedem dieser Therme f(xo)/3! also 2/3! = 1/3. Da man diesen Therm drei mal hat kommt man so auf 1. Also bekommt man [mm] 1*(x+2)^{2}(y-3) [/mm]

ciao, Mike.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Di 10.06.2008
Autor: Somebody


> [Dateianhang nicht öffentlich]
>  Hallo,
>  
> ich habe alle Ableitungen und meinen Entwicklungspunkt
> (-2,3) dort eingesetzt.
>  
> fx(-2,3) = 1
>  fyyx(-2,3) = 2 = fxyy(-2,3) müsste ja das gleiche sein
> nach dem Satz von Schwarz
>  
> Alle anderen Ableitungen werden an dieser Stelle 0.
>  
> Mein Problem ist, dass wir eine Formel mit dem Multiindex
> [mm]\alpha.[/mm] Mir scheint nicht ganz klar zu sein, was dieser
> eigentlich bedeutet. Wenn ich mir eine Lösung aus einer
> alten Aufgabe anschaue, bei der bei dieser dritten
> Ableitung auch 2 herauskam, müsste meine Funktion lauten:
>  [mm]f(x,y)=x+2+(x+2)^{2}(y-3)[/mm]
>  
> Mir ist klar, dass dieser Multiindex dazu da ist, diese
> ganzen gleichen Ableitungen (Ableiten nach yyx, xyy, yxy)
> nur einmal hinschreiben zu müssen, um Übersicht über die
> vielen Therme zu haben. Aber wie man die konkret berechnet
> verstehe ich nicht so ganz. Es wäre ganz cool wenn mir das
> jemand erklären könnte.
>  
> Ich hatte mir das nur so überlegt: Wenn man die Glieder
> einzeln hinschreiben würde hätte man ja wegen der 3.
> Ordnung in jedem dieser Therme f(xo)/3! also 2/3! = 1/3. Da
> man diesen Therm drei mal hat kommt man so auf 1. Also
> bekommt man [mm]1*(x+2)^{2}(y-3)[/mm]

Also wenn Du die $n$-te partielle Ableitung einer Funktion mit $2$ Variablen anschaust, bei der nach der ersten Variablen (sagen wir $x$) genau $k$ mal abgeleitet wurde, dann gibt es [mm] $\binom{n}{k}$ [/mm] verschiedene Reihenfolgen (elementare Kombinatorik: man kann die $k$ Positionen, bei denen nach der fraglichen Variablen partiell abgeleitet wurde, auf [mm] $\binom{n}{k}$ [/mm] Arten wählen. In Deinem Fall war $n=3$ (dritte partielle Ableitung) und es wurde $k=2$ mal nach $y$ abgeleitet: ergibt [mm] $\binom{3}{2}=3$ [/mm] solche partiellen Ableitungen [mm] $f_{xyy}$, $f_{yxy}$ [/mm] und [mm] $f_{yyx}$. [/mm]
Der Binomialkoeffizient reichte hier für die Zählung aus, weil nur nach $2$ Variablen partiell abgeleitet werden konnte. Im allgemeinen Fall (drei oder mehr Variable) wirst Du sog. Multinomialkoeffizienten zur Zählung der Anzahl Möglichkeiten verwenden müssen.

Bezug
                
Bezug
Taylorentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:42 Di 10.06.2008
Autor: mikemodanoxxx

hm na gut danke.. ich glaube ich muss in der Lernphase für die Klausur dann einfach mal ein Taylorpolynom ausrechnen für eine Funktion mit 3 Veränderlichen um das alles richtig zu verinnerlichen..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de