www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Taylorentwicklung
Taylorentwicklung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung: Fehlerabschätzung
Status: (Frage) beantwortet Status 
Datum: 12:44 Mo 08.09.2008
Autor: Marcel08

Aufgabe
Gegeben sei die Funktion f : [mm] (0,+\infty) \times (0,+\infty) \to \IR, [/mm] mit f(x,y) = [mm] x^{4}ln(xy) [/mm] .

a) Bestimmen Sie das Taylorpolynom 2. Ordnung [mm] T_{2}(x,y) [/mm] um den Entwicklungspunkt (1,1)

b) Schätzen Sie den Fehler von [mm] T_{2}(x,y) [/mm] an der Stelle (1,0.8) nach oben ab.

Hallo liebe Mathe- Community,

ich würde gerne wissen, wie ich im Aufgabenteil b) das Restglied nach Lagrange genau aufstelle. In der Musterlösung steht folgender Aufbau:

[mm] R_{3}(1,0.8) [/mm] = 1/3! [mm] (-0.2)^{3} f_{yyy}(1,\lambda), \lambda \in [/mm] (0.8,1)

1.) Wieso wird für die Aufstellung des Restglieds die partielle Ableitung 3. Ordnung nach y genommen? Wieso verwendet man für die Fehlerabschätzung nicht beispielsweise [mm] f_{xxx} [/mm] oder [mm] f_{xxy}, [/mm] etc.?

2.) Wieso ist das offene Intervall von [mm] \lambda [/mm] genau umgekehrt verglichen mit dem Intervall des Restgliedes?

Über hilfreiche Antworten von den Mathe- Profis würde ich mich sehr freuen. :-) Gruß,


Marcel

        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Mo 08.09.2008
Autor: Merle23


> Gegeben sei die Funktion f : [mm](0,+\infty) \times (0,+\infty) \to \IR,[/mm]
> mit f(x,y) = [mm]x^{4}ln(xy)[/mm] .
>  
> a) Bestimmen Sie das Taylorpolynom 2. Ordnung [mm]T_{2}(x,y)[/mm] um
> den Entwicklungspunkt (1,1)
>  
> b) Schätzen Sie den Fehler von [mm]T_{2}(x,y)[/mm] an der Stelle
> (1,0.8) nach oben ab.
>  Hallo liebe Mathe- Community,
>  
> ich würde gerne wissen, wie ich im Aufgabenteil b) das
> Restglied nach Lagrange genau aufstelle. In der
> Musterlösung steht folgender Aufbau:
>  
> [mm]R_{3}(1,0.8)[/mm] = 1/3! [mm](-0.2)^{3} f_{yyy}(1,\lambda), \lambda \in[/mm]
> (0.8,1)
>  
> 1.) Wieso wird für die Aufstellung des Restglieds die
> partielle Ableitung 3. Ordnung nach y genommen? Wieso
> verwendet man für die Fehlerabschätzung nicht
> beispielsweise [mm]f_{xxx}[/mm] oder [mm]f_{xxy},[/mm] etc.?

Find ich auch komisch. Meiner Meinung nach müsste man alle möglichen Kombinationen mit einbeziehen, also [mm] f_{xxx}, f_{xxy}, f_{xyy} [/mm] und [mm] f_{yyy}. [/mm]

>  
> 2.) Wieso ist das offene Intervall von [mm]\lambda[/mm] genau
> umgekehrt verglichen mit dem Intervall des Restgliedes?
>  

Diese "freie Variable" beim Restglied befindet sich irgendwo auf der Verbindungsstrecke zwischen dem Entwicklungspunkt und dem Punkt, wo ich den Fehler abschätzen will.
Also in deinem Fall ist [mm]\lambda \in \{t(1,0.8) + (1-t)(1,1):t\in [0,1] \} = \{(1,\xi):\xi\in [0.8,1]\}[/mm].

> Über hilfreiche Antworten von den Mathe- Profis würde ich
> mich sehr freuen. :-) Gruß,
>  
>
> Marcel

Bezug
                
Bezug
Taylorentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:06 Mo 08.09.2008
Autor: Marcel08

Okay, vielen Dank soweit. Gruß,


Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de