www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Taylorentwicklung
Taylorentwicklung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung: Ableiten
Status: (Frage) beantwortet Status 
Datum: 11:50 Sa 28.02.2009
Autor: Ameli

Aufgabe
Berechnen Sie die Taylorreihe zu f(x)=x²/1+x an der Stelle x=0.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo. Ich habe da mal ein Frage zum ableiten (Kettenregel)
Bei folgenden Beispielen weiß ich nicht weiter:
- [mm] (1+x)^4 [/mm]    wie genau leite ich das jetzt ab ?
- [mm] 2(1+x)^4 [/mm]  wie löse ich diese Klammer auf? Das Hoch4 irritiert mich.

Viel Dank ;-)

        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Sa 28.02.2009
Autor: Steffi21

Hallo, möchtest du [mm] (1+x)^{4} [/mm] ableiten, so sind die äußere- und innere Ableitung zu berechnen

äußere Ableitung: [mm] 4*(1+x)^{3} [/mm]

innere Ableitung: 1 (die Ableitung von 1+x)

somit bekommst du: [mm] 1*4*(1+x)^{3}=4*(1+x)^{3} [/mm]

zum Auflösen der Klammer [mm] 4*(1+x)^{4}=2*(1+x)^{2}*(1+x)^{2} [/mm] verwende also eine Binomische Formel, dann Schritt für Schritt ausmultiplizieren, jeden Term der 1. Klammer mit jedem Term der 2. Klammer multiplizieren, eventuell sagt dir ja auch das Pascalsche Dreieck etwas, geht natürlich wesentlich schneller,

Steffi

Bezug
                
Bezug
Taylorentwicklung: auflösen
Status: (Frage) beantwortet Status 
Datum: 12:11 Sa 28.02.2009
Autor: Ameli

Supi. Vielen Dank !
Also multipliziere ich die Klammern einfach miteinander. Das Ergebnis multpliziere ich dann mit 2 ?!
oder:
(x+1)(x+1)(x+1)(x+1) = 2(x+1)²(x+1)²

Bezug
                        
Bezug
Taylorentwicklung: Sinn der Umformung unklar
Status: (Antwort) fertig Status 
Datum: 12:32 Sa 28.02.2009
Autor: Loddar

Hallo Ameli!


So ganz klar ist mir immer noch nicht, was dies mit der Taylorentwicklung zu tun hat. [kopfkratz3]

Und: warum willst Du den Term [mm] $2*(x+1)^4$ [/mm] ausmultiplizieren? In einer derartig faktorisierten Form ist vieles viel einfacher zu handhaben.


> Das Ergebnis multpliziere ich dann mit 2 ?!
> oder:
> (x+1)(x+1)(x+1)(x+1) = 2(x+1)²(x+1)²

Schon sauber aufschreiben:
[mm] $$2*(x+1)^4 [/mm] \ = \ [mm] 2*(x+1)^2*(x+1)^2 [/mm] \ = \ 2*(x+1)*(x+1)*(x+1)*(x+1)$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de