www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Taylorentwicklung Restglied
Taylorentwicklung Restglied < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung Restglied: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 So 18.09.2011
Autor: Fry

Hallo zusammen,

gilt bei der Taylorreihenentwicklung (um 0) im Komplexen die Restgliedabschätzung

[mm]\left|f(x)-\sum_{n=1}^{m}\bruch{f^{n}(0)}{n!}\right|\le \bruch{|f^{(m+1)}(0)|}{(m+1)!}[/mm]  ? Falls ja, kennt jemand ne Inetseite oder ein Buch, in dem das steht?
Kann mir nicht erklären, wie man daraufkommt.

Habe nämlich in einem Paper folgendes gefunden:
[mm]\left|f(x)-\sum_{n=1}^{m}\bruch{f^{n}(0)}{n!}\right|\le \bruch{1}{R^{m+1}}\sup_{|z|=R}|f(z)|[/mm]

Entsprechend der Cauchy Ungleichungen gilt ja [mm] \bruch{|f^{(m+1)}(0)|}{(m+1)!}\le \bruch{1}{R^{m+1}}\sup_{|z|=R}|f(z)| [/mm]
Daher meine Annahme. (f sei holomorph für [mm] |z|\le [/mm] R)

Wäre echt toll, wenn ihr mir da weiterhelfen könntet!
Danke.

LG
Fry



        
Bezug
Taylorentwicklung Restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 08:07 Mo 19.09.2011
Autor: fred97


> Hallo zusammen,
>  
> gilt bei der Taylorreihenentwicklung (um 0) im Komplexen
> die Restgliedabschätzung
>
> [mm]\left|f(x)-\sum_{n=1}^{m}\bruch{f^{n}(0)}{n!}\right|\le \bruch{|f^{(m+1)}(0)|}{(m+1)!}[/mm]
>  ?

Nein. Nimm mal [mm] f(z)=z^3 [/mm] und m=1

FRED


> Falls ja, kennt jemand ne Inetseite oder ein Buch, in
> dem das steht?
>  Kann mir nicht erklären, wie man daraufkommt.
>
> Habe nämlich in einem Paper folgendes gefunden:
>  [mm]\left|f(x)-\sum_{n=1}^{m}\bruch{f^{n}(0)}{n!}\right|\le \bruch{1}{R^{m+1}}\sup_{|z|=R}|f(z)|[/mm]
>  
> Entsprechend der Cauchy Ungleichungen gilt ja
> [mm]\bruch{|f^{(m+1)}(0)|}{(m+1)!}\le \bruch{1}{R^{m+1}}\sup_{|z|=R}|f(z)|[/mm]
>  
> Daher meine Annahme. (f sei holomorph für [mm]|z|\le[/mm] R)
>  
> Wäre echt toll, wenn ihr mir da weiterhelfen könntet!
>  Danke.
>  
> LG
>  Fry
>  
>  


Bezug
                
Bezug
Taylorentwicklung Restglied: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 Mo 19.09.2011
Autor: Fry


Danke Fred,

irgendeine Ahnung, wie man an die andere Abschätzung kommen könnte?

LG
Fry


Bezug
                        
Bezug
Taylorentwicklung Restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Mo 19.09.2011
Autor: fred97


>
> Danke Fred,
>  
> irgendeine Ahnung, wie man an die andere Abschätzung
> kommen könnte?

Meinst Du diese:

            
$ [mm] \left|f(x)-\sum_{n=1}^{m}\bruch{f^{n}(0)}{n!}\right|\le \bruch{1}{R^{m+1}}\sup_{|z|=R}|f(z)| [/mm] $


?

Das kommt mir abenteuerlich vor !


Welche Eig. soll R haben ?



Für $f(z) [mm] \equiv [/mm] 1$ wird daraus

                     $1 [mm] \le \bruch{1}{R^{m+1}}$ [/mm]

Schau noch mal in dem Paper nach, wie die Ungl. wirklich lautet und wie die Vor. genau aussehen .

FRED

>  
> LG
>  Fry
>  


Bezug
                                
Bezug
Taylorentwicklung Restglied: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Mo 19.09.2011
Autor: Fry


Mmmm...ja, du hast Recht, hab da wohl einiges durcheinander gebracht. Und um Taylorreihenentwicklung scheints ja auch nicht so richtig zu gehen, da die Potenzen von x fehlen...bin verwirrt.

Hier erstmal so, wie es im Artikel steht:
[mm]\left|f(1)-\sum_{n=0}^{m}\bruch{f^{n}(0)}{n!}\right|\le \bruch{R}{R-1}\bruch{1}{R^{m+1}}\sup_{|z|=R}|f(z)|[/mm]

wobei f eine für |z|<R  holomorphe Funktion sei, R>1.

LG
Fry



Bezug
                                        
Bezug
Taylorentwicklung Restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Mo 19.09.2011
Autor: fred97


>
> Mmmm...ja, du hast Recht, hab da wohl einiges durcheinander
> gebracht. Und um Taylorreihenentwicklung scheints ja auch
> nicht so richtig zu gehen, da die Potenzen von x
> fehlen...bin verwirrt.
>  
> Hier erstmal so, wie es im Artikel steht:
>   [mm]\left|f(1)-\sum_{n=0}^{m}\bruch{f^{n}(0)}{n!}\right|\le \bruch{R}{R-1}\bruch{1}{R^{m+1}}\sup_{|z|=R}|f(z)|[/mm]
>  
> wobei f eine für |z|<R  holomorphe Funktion sei, R>1.

Das sieht schon wesentlich besser aus.

Wir setzen [mm] a_n:=\bruch{f^{n}(0)}{n!} [/mm] und M:= [mm] \sup_{|z|=R}|f(z)| [/mm]

Dann gilt für |z|<R:

            $f(z)= [mm] \summe_{n=0}^{\infty}a_nz^n,$ [/mm]

also

             $f(1)= [mm] \summe_{n=0}^{\infty}a_n,$ [/mm]

somit ist

            $|f(1)- [mm] \summe_{n=0}^{m}a_n|= |\summe_{n=m+1}^{\infty}a_n| \le \summe_{n=m+1}^{\infty}|a_n|$ [/mm]

Die Cauchyschen Abschätzungen liefern:

             [mm] |a_n| \le \bruch{M}{R^n} [/mm]


Wenn Du damit den Ausdruck [mm] \summe_{n=m+1}^{\infty}|a_n| [/mm] abschätzt und an die Summenformel für die geometrische Reihe denkst, bekommst Du das Gewünschte,

FRED

>  
> LG
>  Fry
>  
>  


Bezug
                                                
Bezug
Taylorentwicklung Restglied: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Mo 19.09.2011
Autor: Fry

Du bist ein Schatz :).
Dank dir, Fred.

LG
Fry


Bezug
                                                        
Bezug
Taylorentwicklung Restglied: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:34 Mo 19.09.2011
Autor: fred97


> Du bist ein Schatz :).

.....  das ist schön, dass endlich meine wahren Qualitäten entdeckt werden ....


>  Dank dir, Fred.

Keine Ursache

FRED

>  
> LG
>  Fry
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de