www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Taylorentwicklung von Fkt
Taylorentwicklung von Fkt < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung von Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Di 30.06.2009
Autor: Daywalker

Aufgabe
Bestimme zu folgender Funktion das k-te Taylor-Polynom:
[mm] f(x)=e^{-\bruch{1}{x}} [/mm]

Mein Problem ist: Die Ableitungen zu bestimmen, ist nicht so problematisch, wenn man einfach immer weiter ableitet, allerdings erkenne ich keine Struktur, sodass ich die k-te Ableitung angeben könnte.

Ich wäre für jegliche Hilfe sehr dankbar.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorentwicklung von Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Di 30.06.2009
Autor: Al-Chwarizmi


> Bestimme zu folgender Funktion das k-te Taylor-Polynom:
>  [mm]f(x)=e^{-\bruch{1}{x}}[/mm]
>  Mein Problem ist: Die Ableitungen zu bestimmen, ist nicht
> so problematisch, wenn man einfach immer weiter ableitet,
> allerdings erkenne ich keine Struktur, sodass ich die k-te
> Ableitung angeben könnte.


An welcher Stelle [mm] x_0 [/mm] soll denn die Taylorentwicklung
gemacht werden ?
Sollte [mm] x_0=0 [/mm] gemeint sein, dann sind die Ableitungen
an dieser Stelle gar nicht definiert, weil schon f(0)
nicht definiert ist.


LG     Al-Chw.

Bezug
                
Bezug
Taylorentwicklung von Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:06 Di 30.06.2009
Autor: Daywalker

oh, ja das habe ich vergessen, da Tylorentwicklung soll um ein beliebiges [mm] x_{0} [/mm] gemacht werden, allerdings wird die funktion nur für x>0 betrachtet. also soll auch [mm] x_{0} [/mm] >0 sein.

Bezug
        
Bezug
Taylorentwicklung von Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Di 30.06.2009
Autor: Al-Chwarizmi


> Bestimme zu folgender Funktion das k-te Taylor-Polynom:
>  [mm]f(x)=e^{-\bruch{1}{x}}[/mm]
>  Mein Problem ist: Die Ableitungen zu bestimmen, ist nicht
> so problematisch, wenn man einfach immer weiter ableitet,
> allerdings erkenne ich keine Struktur, sodass ich die k-te
> Ableitung angeben könnte.


Die fortlaufenden Ableitungen haben alle die
Form

        $\ [mm] f^{(n)}(x)\ [/mm] =\ [mm] e^{-\bruch{1}{x}}*P^{(n)}(z)$ [/mm]  

wobei [mm] z=x^{-1} [/mm] und [mm] P^{(n)} [/mm] eine gewisse Polynomfunktion
ist. Vorsicht:  Der Grad von [mm] P^{(n)} [/mm] ist nicht etwa n !
Für die Polynome [mm] P^{(n)} [/mm] kann man eine Rekursionsformel
aufstellen. Wenn es gelingt, daraus eine gültige ge-
schlossene Formel zu ermitteln, kann man versuchen,
sie durch vollständige Induktion beweisen.


LG      Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de