www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylorpolynom
Taylorpolynom < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom: Restsatz?
Status: (Frage) beantwortet Status 
Datum: 22:35 Do 29.05.2008
Autor: summer00

Aufgabe
Bestimmen Sie von den folgenden drei Funtkionen das Taylorpolynom dritten Grades. Der Entwicklungspunkt sei hierbei immer x=0:
a) f(x)= [mm] \bruch{1}{1+e^{x}} [/mm]
b) f(x)= tan(x)
c) f(x)= [mm] e^{e^{x}} [/mm]
Bemerkung: Der Definitionsbereich der Funktion aus Aufgabe 2 sei maximal in [mm] \IR [/mm]  gewählt und der Wertebereich sei immer [mm] \IR [/mm]

Hallo!

Wir haben alle drei Taylorpolynome berechnet. Allerdings wissen wir nicht, ob wir jetzt zusätlich noch die Restglieder angeben müssen. Könnte uns jemand etwas dazu sagen?

Unsere Ergebnisse sind bisher:

a) [mm] \bruch{1}{2} [/mm] - [mm] \bruch{1}{4}x+\bruch{5}{192}x^{3} [/mm]
b) [mm] x+\bruch{1}{3}x^{3} [/mm]
c) [mm] e+ex+ex^{2}+\bruch{4e+1}{6}x^{3} [/mm]

Vielen Dank im Voraus.

        
Bezug
Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Do 29.05.2008
Autor: schachuzipus

Hallo summer00,

> Bestimmen Sie von den folgenden drei Funtkionen das
> Taylorpolynom dritten Grades. Der Entwicklungspunkt sei
> hierbei immer x=0:
>  a) f(x)= [mm]\bruch{1}{1+e^{x}}[/mm]
>  b) f(x)= tan(x)
>  c) f(x)= [mm]e^{e^{x}}[/mm]
>  Bemerkung: Der Definitionsbereich der Funktion aus Aufgabe
> 2 sei maximal in [mm]\IR[/mm]  gewählt und der Wertebereich sei
> immer [mm]\IR[/mm]
>  Hallo!
>  
> Wir haben alle drei Taylorpolynome berechnet. Allerdings
> wissen wir nicht, ob wir jetzt zusätlich noch die
> Restglieder angeben müssen. Könnte uns jemand etwas dazu
> sagen?

Hmm, in der Aufgabe steht nur "Taylorpolynom" angeben, also würde ich sagen ohne Restglied

Bedenke aber, dass gilt $f(x)=Taylorpolynom + Restglied$

Das Restglied ist also der Fehler in der Näherung durch das TP an f

>  
> Unsere Ergebnisse sind bisher:
>  
> a) [mm]\bruch{1}{2}[/mm] - [mm]\bruch{1}{4}x+\red{\bruch{5}{192}}x^{3}[/mm]

Der letzte Koeffizient ist falsch, rechne nochmal nach!

>  b) [mm]x+\bruch{1}{3}x^{3}[/mm] [daumenhoch]

>  c) [mm]e+ex+ex^{2}+\red{\bruch{4e+1}{6}}x^{3}[/mm]

Auch hier ist der letze Koeffizient nicht richtig

Schreibe doch mal jeweils für (a) und (c) deine 3. Ableitung auf, dann kann man sehen, ob's nur ein Rechenfehler ist oder ob die Ableitung falsch ist ;_)

>  
> Vielen Dank im Voraus.

Gruß

schachuzipus



Bezug
                
Bezug
Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:41 Do 29.05.2008
Autor: summer00

Danke für die schnelle Antwort.

Wir haben jetzt nochmal gerechnet und bekommen für a als letzen Term heraus: [mm] \bruch{-47}{256}x^{3} [/mm]
die dritte Ableitung haben wir als:
[mm] \bruch{(-e^{x}+3e^{3x}*(1+e^{x})^{4})-((-e^{x}+e^{3x})*4(1+e^{x})^{3}*e^{x})}{(1+e^{x})^{8}} [/mm]

bei der c haben wir als dritten Term [mm] \bruch{5ex^{3}}{6}. [/mm]


Bezug
                        
Bezug
Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Do 29.05.2008
Autor: schachuzipus

Hallo nochmal,

> Danke für die schnelle Antwort.
>  
> Wir haben jetzt nochmal gerechnet und bekommen für a als
> letzen Term heraus: [mm]\bruch{-47}{256}x^{3}[/mm]

Hmm, ich komme da auf [mm] $\frac{1}{48}x^3$ [/mm]

>  die dritte Ableitung haben wir als:
>  
> [mm]\bruch{(-e^{x}+3e^{3x}*(1+e^{x})^{4})-((-e^{x}+e^{3x})*4(1+e^{x})^{3}*e^{x})}{(1+e^{x})^{8}}[/mm]

Da komme ich auf [mm] $f'''(x)=-\frac{e^x\cdot{}(e^{2x}-4e^x+1)}{(e^x+1)^4}$ [/mm]

Also [mm] $f'''(0)=-\frac{1(1-4+1)}{(1+1)^4}=\frac{2}{2^4}=\frac{1}{2^3}=\frac{1}{8}$ [/mm]

Das verpackt mit dem [mm] $\frac{\frac{1}{8}}{3!}$ [/mm] aus der Taylorformel ergibt [mm] $\frac{1}{48}$ [/mm]

>  
> bei der c haben wir als dritten Term [mm]\bruch{5ex^{3}}{6}.[/mm] [ok]





Gruß

schachuzipus  


Bezug
                                
Bezug
Taylorpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:23 Fr 30.05.2008
Autor: summer00

Ah! Vielen DanK!
Wir haben nun endlich den Fehler gefunden. Wir haben die selbe Ableitung, wie du, hatten nur die KLammerung falsch und somit die Werte total verhauen. Aber jetzt kommen wir auch auf den richtigen Wert. Merci!




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de