www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Derive" - Taylorpolynom Aproximationsfeh
Taylorpolynom Aproximationsfeh < Derive < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Derive"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom Aproximationsfeh: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Do 28.10.2010
Autor: sengsti

Aufgabe
Sei f(x) = sin(x) und x0=0. Wie groß muss der Grad n des Taylorpolinoms sein, damit dieses Polynom auf dem Interwall [0,[mm]pi[/mm]/2] bis auf die ersten zehn Nachkommastellen mit f(x) übereinstimmt? |Rn(x)| < [mm]10^-11[/mm]

So das ist ja soweit kein Problem. Da wir ja im Derive Teil sind:
Mann kann doch das ganze mit:
     ⎛        ⎛  ⎞n + 1              ⎞
     ⎜        ⎜⎯⎟                   ⎟
     ⎜        ⎝ 2 ⎠                   ⎟
TABLE⎜f(x) ≔ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯, n, 1, 20, 1⎟
     ⎝         (n + 1)!               ⎠

leicht lösen indem ich mir alle angeben lasse.

Man kann aber auch im Derive Teilprogrammieren.
Also müsste das f(x) mit einer IF bedingung lösbar sein.
Könnte mir da wer helfen?
Dankeschonmal im voraus
lg Sengsti
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorpolynom Aproximationsfeh: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Do 28.10.2010
Autor: leduart

Hallo
ein nachrechnen mit derive ist kein Beweis!
Auch wenn dir das Programm mit if ausgibt, wann [mm] sin(\pi/2) [/mm] mit den Taylorpol. 14ten grades auf 10 Stellen übereinstimmt. Es sei denn  du beweisest wie genau etwa derive sin Werte ausrechnet! und da musst du erst wissen, wie es das macht! ausserdem willst du ja für ein ganzes Intervall vergleichen!
also musst du einfach das Restglied abschätzen, kein Programm kenn einen Beweis ersetzen, ohne die Beweise würde niemand derive vertrauen, das ja eineige Fkt durch Taylorpol. berechnet. oder woher kennt derive den sin zu ner beliebigen Zahl.
Wenn du den Grad des Pol. hast kannst du dich dann mit derive überzeugen, dass du Recht hattest.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Derive"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de