www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Taylorpolynome
Taylorpolynome < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynome: 2.Teil
Status: (Frage) beantwortet Status 
Datum: 18:37 Do 15.05.2008
Autor: Petite

Aufgabe
Berechnen Sie das Taylor-Polynom 2-ten Grades um [mm] x_0=0 [/mm] von [mm] f(x)=e^{cos x} [/mm] und bestimmen Sie eine Konstante M>0 derart, dass [mm] \forall x\in \R:|f(x)-P_2(x)|\le [/mm] M [mm] \* |x^3| [/mm]

Also den ersten Teil haben wir ohne Probleme hinbekommen.
[mm] P_2(x)=\bruch{ex}{2}. [/mm]

So beim zweiten Teil komme ich nicht weiter.
Ich habe das ganze einfach mal eingesetzt:
[mm] |e^{cos x}-\bruch{ex}{2}|\le [/mm]  M [mm] \* |x^3| [/mm]
an dieser Stelle sehe ich nicht, wie ich am besten weiter mache.

Ich danke für jede Hilfe

        
Bezug
Taylorpolynome: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Do 15.05.2008
Autor: leduart

Hallo
Dein Taylorpolynom ist falsch!
1. es ist ersten Grades, 2. noch nicht mal bei x=0 ist es ne Näherung. f(0)=e, euer [mm] P_2(0)=0 [/mm]
Also erst mal berichtigen, dann Restglied abschätzen. Restglied sieh z.Bsp wiki- Taylorpolynom.
Gruss leduart

Bezug
                
Bezug
Taylorpolynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Do 15.05.2008
Autor: Petite

Warum brauche ich das Restglied vom Taylorpolynom wenn das Taylorpolynom des 2. Grades gefordert ist?
Hab den Fehler gefunden:
[mm] P_2(x)=e-\bruch{ex^2}{2}. [/mm]

Bezug
                        
Bezug
Taylorpolynome: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Do 15.05.2008
Autor: leduart

Hallo Petite
Das Restglied gibt doch den Unterschied des Polynoms zur Funktion an, und den suchst du doch!
Ein bissel nettere äußere Form bitte. Du willst doch was von uns. wenn dir jemand direkt, also nicht übers netz hilft, bombardierst du ihn dann auch ohne jeden Kommentar über die hilfe mit der nächsten Frage?
Gruss leduart

Bezug
                                
Bezug
Taylorpolynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Do 15.05.2008
Autor: Petite

Hab grad eine Einsicht bekommen. Im Betrag steht der Rest des Polynoms 2. Grades drinne. Dachte vorher, es wäre die Funktion.

Danke für deine Hilfe.
Sry, bin ein bissle angespannt zur Zeit.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de