www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Taylorreihe
Taylorreihe < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe: Restglied Abschätzung
Status: (Frage) beantwortet Status 
Datum: 21:00 Mi 16.04.2008
Autor: side

Aufgabe
Sei [mm] x_0\in\IR [/mm] beliebig.
a)Zeige, dass [mm] cos:\IR\to\IR [/mm] auf ganz [mm] \IR [/mm] durch die Taylorreihe in [mm] x_0 [/mm] dargestellt wird, d.h. bezeichnet [mm] T_{x_0,n} [/mm] das n-te Taylorpolynom der cos-Fkt in [mm] x_0, [/mm] so gilt [mm] T_{x_0,n}\to{cos(x)} [/mm] für [mm] n\to\infty [/mm] und jedes [mm] x\in\IR. [/mm]
b)Berechne [mm] T_{\bruch{\pi}{4},2} [/mm] und zeige, dass dieses Polynom auf [mm] [\bruch{\pi}{4}-0,1 [/mm] , [mm] \bruch{\pi}{4}+0,1] [/mm] von cos um weniger als einen Fehler von [mm] 2*10^{-4} [/mm] abweicht.

a)Ich denke, dass ich hier die Taylorreihe bilden muss und dann zeigen soll, dass [mm] cos(x)-T_{x_0,n}=0 [/mm] ist, also das Restglied gegen 0 geht. Bin ich bis dahin schon mal auf dem richtigen Weg?
b)Hier kann ich das Taylorpolynom ja ausrechnen, dann muss ich denke ich überlegen, wie die cos-Fkt auf dem angegebenen Intervall verläuft. Jetzt kann ich wieder wie bei a) vorgehen und [mm] cos(x)-T_{x_0,n} [/mm] betrachten. Diesmal ist das Restglied jedoch nciht 0, sondern an einer bestimmten Stelle wirdes maximal groß, das bedeutet, dieser ert ist dann die maximale Abweichung zwischen Fkt und Taylorpolynom, oder?

        
Bezug
Taylorreihe: Tip
Status: (Antwort) fertig Status 
Datum: 22:08 Mi 16.04.2008
Autor: schlunzbuns1

Ja, Du bist auf dem richtigen Weg.
(a) Das Restglied [mm] R_n [/mm] muß gegen  Null gehen, damit die Funktion in Taylorreihe darstellbar ist.  Es ist aber
R_(n-1) = (1/n!) * (cos^(n)(u)) * [mm] (x-x_0)^n, [/mm] mit einer Zwischenstelle
u [mm] \in [x_0,x], [/mm] wenn x > [mm] x_0. [/mm] Da die Ableitungen vom Kosinus bis
auf das Vorzeichen sämtlich Sinus oder Kosinus sind und der Betrag dieser
Winkelfunktionen durch 1 beschränkt ist, ergibt sich die Ungleichung
|R_(n-1)|<= (1/n!) * [mm] |x-x_0|^n [/mm] <= [mm] a^n/n!. [/mm]
Der letzte Ausdruck beschreibt das n-te Glied der Potenzreihe von [mm] e^a, [/mm]
welche bekanntlich überall konvergiert. Das bedeutet, daß dieses
n-te Glied gegen Nulll konvergieren muss. Also R_(n-1) -> 0.
(b) Die obigen Arbumente führen im vorgegebenen Intervall
zur Fehlerabschätzung für das Restglied der Form
|R_(n-1)|<= [mm] 0.1^n/!n!. [/mm] Mit n=3 folgt dann  |R_(n-1)|<= 1.6667e-004.
das ist noch besser als die angegebene Schranke.
Gruss vom Schlunzbuns



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de