www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylorreihe
Taylorreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe: Hinweis
Status: (Frage) beantwortet Status 
Datum: 13:02 Di 20.07.2010
Autor: Cherrykiss

Aufgabe
Geben Sie die Taylorreihe für y = f(x) = [mm] e^{-x} [/mm] in [mm] x_0 [/mm] = 0 an.
Welches Restglied ergibt sich, wenn man y = [mm] e^{-x} [/mm] durch eine quadratische Näherungsfunktion ersetzt?

Hallo ihr,

vllt könnt ihr mir weiterhelfen.  Ich habe zu der obrigen Aufgabe die Taylorreihe erstellt und hänge nun an dem zweiten Teil der Aufgabenstellung. Ich kann leider mit "quadratischer Näherungsfunktion" nichts anfangen.

Taylorreihe von [mm] f(x)=e^{-x} [/mm] : [mm] \summe_{i=0}^{n} (-1)^n [/mm] * [mm] e^{-x} [/mm] * [mm] \bruch{1}{n!} [/mm]

Könnt ihr mir bitte sagen, wie ich den zweiten Teil angehen muss?

vielen dank und liebe Grüße

        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Di 20.07.2010
Autor: schachuzipus

Hallo,

eine Teilantworrt:

> Geben Sie die Taylorreihe für y = f(x) = [mm]e^{-x}[/mm] in [mm]x_0[/mm] = 0
> an.
>  Welches Restglied ergibt sich, wenn man y = [mm]e^{-x}[/mm] durch
> eine quadratische Näherungsfunktion ersetzt?
>  Hallo ihr,
>
> vllt könnt ihr mir weiterhelfen.  Ich habe zu der obrigen
> Aufgabe die Taylorreihe erstellt und hänge nun an dem
> zweiten Teil der Aufgabenstellung. Ich kann leider mit
> "quadratischer Näherungsfunktion" nichts anfangen.
>  
> Taylorreihe von [mm]f(x)=e^{-x}[/mm] : [mm]\summe_{i=0}^{n} (-1)^n[/mm] *  [mm]e^{-x}[/mm] * [mm]\bruch{1}{n!}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Das ist Unfug, du definiertst $e^{-x}$ durch eine Reihe, in der $e^{-x}$ drin steht?!

Es ist doch $e^{x}=\sum\limits_{n=0}^{\infty}\frac{1}{n!}\cdot{}x^n$ für alle $x\in\IR$ (sogar $\in\IC$)

Also $e^{-x}=\sum\limits_{n=0}^{\infty}\frac{1}{n!}\cdot{}(-x)^n}=\ldots$

>  
> Könnt ihr mir bitte sagen, wie ich den zweiten Teil
> angehen muss?
>  
> vielen dank und liebe Grüße


LG

schachuzipus

Bezug
                
Bezug
Taylorreihe: Fehler gefunden
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:31 Di 20.07.2010
Autor: Cherrykiss

Danke.. ich hatte da einen Fehler beim Einsetzen in die Formel der Taylor-Reihe und bin nun auch auf die Reihe gekommen.

Bezug
        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Di 20.07.2010
Autor: schachuzipus

Hallo nochmal,

> Geben Sie die Taylorreihe für y = f(x) = [mm]e^{-x}[/mm] in [mm]x_0[/mm] = 0
> an.
>  Welches Restglied ergibt sich, wenn man y = [mm]e^{-x}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

durch

> eine quadratische Näherungsfunktion ersetzt?
>  Hallo ihr,
>
> vllt könnt ihr mir weiterhelfen.  Ich habe zu der obrigen
> Aufgabe die Taylorreihe erstellt und hänge nun an dem
> zweiten Teil der Aufgabenstellung. Ich kann leider mit
> "quadratischer Näherungsfunktion" nichts anfangen.

Naja, ich würde sagen, dass du dafür das Taylorpolynom bis zur Ordnung 2 hernimmst und das entsprechende Restglied angibst.

Vgl. dazu die andere Antwort.

Wie genau sieht das TP aus? Das ist die Näherungsfunktion $n(x) \ = \ \red{\Box}} \ \cdot{} \ x^2 \ + \ \blue{\Box} \ \cdot{} \ x \ + \ \green{\Box}$ ...

Und das Restglied ...

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de