www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Teilbarkeit
Teilbarkeit < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit: Übung
Status: (Frage) beantwortet Status 
Datum: 13:33 Do 08.05.2014
Autor: capri

Aufgabe
Show for every natural integer n, the following:

a) n(n+1)(n+2)(n+3) is divisible by 24
b) n(n+1)(n+2)(n+3)(n+4) is divisible by 120

Hallo ich habe mal ne kurze Frage zu dieser Aufgabe.

Ich habe a) mit Induktion gemacht.

IA: n=0 kommt raus 0 und das ist durch 24 Teilbar

IS: n ---> n+1

(n+1)(n+2)(n+3)(n+4)

okay nun ist es mein Problem wie ich es formulieren soll. 4*3*2*1 sind ja 24 und deswegen teilt es doch durch 24 oder?
Soll ich den IS so lassen oder noch einen Schritt machen oder soll ich es schriftlich argumentieren so wie ich es hier gemacht habe?

bei b) wäre genau das selbe bloß mit (n+1)(n+2)(n+3)(n+4)(n+5)

        
Bezug
Teilbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Do 08.05.2014
Autor: Diophant

Hallo,

> Show for every natural integer n, the following:

>

> a) n(n+1)(n+2)(n+3) is divisible by 24
> b) n(n+1)(n+2)(n+3)(n+4) is divisible by 120
> Hallo ich habe mal ne kurze Frage zu dieser Aufgabe.

>

> Ich habe a) mit Induktion gemacht.

>

> IA: n=0 kommt raus 0 und das ist durch 24 Teilbar

>

> IS: n ---> n+1

>

> (n+1)(n+2)(n+3)(n+4)

>

> okay nun ist es mein Problem wie ich es formulieren soll.
> 4*3*2*1 sind ja 24 und deswegen teilt es doch durch 24
> oder?

Das ist zu wenig an Argumentation, das wird nicht ausreichen. Denn sonst könnte man mit der gleichen Logik die Sache sofort abhaken, sprich: das lässt sich sinngemäß für den Ausgangsterm genauso machen.

> Soll ich den IS so lassen oder noch einen Schritt machen
> oder soll ich es schriftlich argumentieren so wie ich es
> hier gemacht habe?

Wenn du das wirklich per vollständiger Induktion machen möchtest (was ich für nicht so klug halte), dann sollte ja beim Umformen ein Term der Form

n*(n+1)*(n+2)*(n+3)+R(n)

herauskommen, wobei man vom ersten Summanden die Teilbarkeit durch 24 per Induktionsvorauussetzung annimmt und vom Summand R(n) dann noch zeigen muss.

Gruß, Diophant

Bezug
                
Bezug
Teilbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Do 08.05.2014
Autor: capri

hmm ok dann meine nächste Frage wenn es per Induktion nicht klug ist, könntest du mir sagen was besser wäre? ^^


LG

Bezug
                        
Bezug
Teilbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Do 08.05.2014
Autor: schachuzipus

Hallo,

> hmm ok dann meine nächste Frage wenn es per Induktion
> nicht klug ist, könntest du mir sagen was besser wäre?
> ^^

Du kannst für a) schnell argumentieren, dass [mm]n(n+1)(n+2)(n+3)[/mm] durch [mm]2,3[/mm] und [mm]4[/mm] teilbar ist ([mm]24=2\cdot{}3\cdot{}4[/mm]).

$n(n+1)(n+2)(n+3)$ ist ja ein Produkt von 4 aufeinander folgenden nat. Zahlen.

Bei b) brauchst du nur die Teilbarkeit durch 5, durch 24 ist es gem. a) schon teilbar.

Aber auch da ist es ein Produkt von 5 aufeinander folgenden nat. Zahlen ...

>
>

> LG

Gruß

schachuzipus

Bezug
                                
Bezug
Teilbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Do 08.05.2014
Autor: capri

ok danke habe es verstanden :)

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de