www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Teilbarkeit durch 2730
Teilbarkeit durch 2730 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit durch 2730: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 Di 07.02.2012
Autor: briddi

Aufgabe
Zeige 2730 teilt [mm] n^{13}-n [/mm] für alle n [mm] \in \IN [/mm]

Hallo, ich bin gerade am Üben für meine Klausur und habe diese Aufgabe gefunden, bei der ich den Lösungsansatz überhaupt nicht verstehe. Kann mir da jemand auf die Sprünge helfen? Ist vermutlich gar nicht so schwer, ich seh es nur gerade nicht.
Lösungshinweis: [mm] 2730=2*3*5*7*13 [/mm] und 1,2,4,6,12 sind Teiler von [mm] \varphi(13)=12 [/mm]
Ich seh das beides ein, aber inwiefern hilft mir das bei der Lösung der Aufgabe?

Vielen Dank,
briddi

        
Bezug
Teilbarkeit durch 2730: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Di 07.02.2012
Autor: felixf

Moin briddi!

> Zeige 2730 teilt [mm]n^{13}-n[/mm] für alle n [mm]\in \IN[/mm]
>
>  Hallo, ich
> bin gerade am Üben für meine Klausur und habe diese
> Aufgabe gefunden, bei der ich den Lösungsansatz überhaupt
> nicht verstehe. Kann mir da jemand auf die Sprünge helfen?
> Ist vermutlich gar nicht so schwer, ich seh es nur gerade
> nicht.
>  Lösungshinweis: [mm]2730=2*3*5*7*13[/mm] und 1,2,4,6,12 sind
> Teiler von [mm]\varphi(13)=12[/mm]
> Ich seh das beides ein, aber inwiefern hilft mir das bei
> der Lösung der Aufgabe?

Kennst du den chinesischen Restsatz und den Satz von Euler bzw. den kleinen Satz von Fermat?

Wenn du das mit deinen Beobachtungen oben kombinierst bist du schnell fertig.

LG Felix


Bezug
                
Bezug
Teilbarkeit durch 2730: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Di 07.02.2012
Autor: briddi

Ja, kenn ich.
Ich hab das auch schon eben zerlegt: Wenn n nicht teilerfremd ist zu den Primzahlen, ist es offensichtlich. Sei also n nicht Vielfaches von den Moduln, dann kann ich den Satz von Fermat anwenden.
[mm] n^{13}-n\equiv [/mm] 0 (13) gilt, weil [mm] n^{12}*n-n\equiv [/mm] n-n [mm] \equiv [/mm] 0 (13)
[mm] n^{13}-n\equiv [/mm] 0 (2) gilt, weil [mm] n\equiv [/mm] 1 (2)
[mm] n^{13}-n\equiv [/mm] 0 (3) gilt, weil [mm] (n^2){^6}*n-n\equiv [/mm] 0 (3)
[mm] n^{13}-n\equiv [/mm] 0 (5) gilt, weil [mm] (n^4)^3*n-n\equiv [/mm] 0 (5)
[mm] n^{13}-n\equiv [/mm] 0 (7) gilt, weil [mm] (n^6)^2*n-n\equiv [/mm] 0 (7)

Stimmt das so?
Ich benutze dann aber nie, dass 1,2,4,6 und 12 Teiler von [mm] \varphi(13)=12 [/mm] sind. Kann man das vielleicht benutzen um schneller zu einer Lösung zu kommen?

Bezug
                        
Bezug
Teilbarkeit durch 2730: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Sa 11.02.2012
Autor: felixf

Moin!

>  Ich hab das auch schon eben zerlegt: Wenn n nicht
> teilerfremd ist zu den Primzahlen, ist es offensichtlich.
> Sei also n nicht Vielfaches von den Moduln, dann kann ich
> den Satz von Fermat anwenden.

Du musst das ganze allerdings auch dann beweisen, wenn n nicht teilerfremd zu den Primzahlen ist.

> [mm]n^{13}-n\equiv[/mm] 0 (13) gilt, weil [mm]n^{12}*n-n\equiv[/mm] n-n
> [mm]\equiv[/mm] 0 (13)
> [mm]n^{13}-n\equiv[/mm] 0 (2) gilt, weil [mm]n\equiv[/mm] 1 (2)
>  [mm]n^{13}-n\equiv[/mm] 0 (3) gilt, weil [mm](n^2){^6}*n-n\equiv[/mm] 0 (3)
>  [mm]n^{13}-n\equiv[/mm] 0 (5) gilt, weil [mm](n^4)^3*n-n\equiv[/mm] 0 (5)
>  [mm]n^{13}-n\equiv[/mm] 0 (7) gilt, weil [mm](n^6)^2*n-n\equiv[/mm] 0 (7)
>  
> Stimmt das so?

Ja. Aber nur, wenn $n$ wirklich zu allen dieser Primzahlen teilerfremd ist.

>  Ich benutze dann aber nie, dass 1,2,4,6 und 12 Teiler von
> [mm]\varphi(13)=12[/mm] sind. Kann man das vielleicht benutzen um
> schneller zu einer Lösung zu kommen?

Nun, ist $p$ ein Primteiler von $2730$, so ist [mm] $\varphi(p) [/mm] = p - 1$ ein Teiler von [mm] $\varphi(13)$, [/mm] wie du bemerkt hast. Also gilt mit Fermat [mm] $n^{\varphi(p)} \equiv [/mm] 1 [mm] \pmod{p}$, [/mm] und somit auch [mm] $n^{\varphi(13)} [/mm] = [mm] n^{12} \equiv [/mm] 1 [mm] \pmod{p}$. [/mm] Und daraus folgt [mm] $n^{12+1} \equiv [/mm] n [mm] \pmod{p}$. [/mm]

Damit musst du nicht jedes $p$ einzelnd diskutieren.

LG Felix


Bezug
                                
Bezug
Teilbarkeit durch 2730: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:43 Mo 04.06.2012
Autor: quasimo

Hallo felixf,

Ich habe eine Frage, du verwendest in deinem Beweis $ [mm] n^{\varphi(p)} \equiv [/mm] 1 [mm] \pmod{p} [/mm] $
da  gilt doch nur wenn ggT(p,n)=1

also ist es in dem Bsp. : $ [mm] n^{\varphi(13)} \equiv [/mm] 1 [mm] \pmod{13} [/mm] $
und nicht p im Modulo?
außerdem kann ich den satz doch nur anwenden ggT(13,n)=1
was mache ich wenn n ein vielfaches von 13 ist?




Bezug
                                        
Bezug
Teilbarkeit durch 2730: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Di 05.06.2012
Autor: felixf

Moin,

> Ich habe eine Frage, du verwendest in deinem Beweis
> [mm]n^{\varphi(p)} \equiv 1 \pmod{p}[/mm]
>  da  gilt doch nur wenn
> ggT(p,n)=1

genau. Ich bezog mich auf diesen Fall.

Im Fall $p [mm] \mid [/mm] n$ muss man anders vorgehen.

> also ist es in dem Bsp. : [mm]n^{\varphi(13)} \equiv 1 \pmod{13}[/mm]
>  
> und nicht p im Modulo?

Was meinst du damit?

>  außerdem kann ich den satz doch nur anwenden ggT(13,n)=1
>  was mache ich wenn n ein vielfaches von 13 ist?

Dann gilt $n [mm] \equiv [/mm] 0 [mm] \pmod{13}$. [/mm] Und [mm] $0^{13}$ [/mm] ist gleich [mm] $0^1$. [/mm] Also gilt auch dann [mm] $n^{13} \equiv [/mm] n [mm] \pmod{13}$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de