www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Teilbarkeit zeigen
Teilbarkeit zeigen < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit zeigen: Lösungsvorschlag
Status: (Frage) beantwortet Status 
Datum: 15:54 Mo 21.01.2013
Autor: KlickKlack

Aufgabe
Zeigen Sie:

13 | [mm] (27^{1379}-14^{1379}) [/mm]

Benutzen Sie: [mm] x^{n}-y^{n}=(x-y)*\summe_{i=0}^{n-1}x^{n-1-i}*y^{i} [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mein Lösungsvorschlag:


13 | [mm] (27^{1379}-14^{1379}) [/mm]

[mm] \gdw \bruch{27^{1379}-14^{1379}}{13}=n [/mm]    mit n [mm] \in \IZ [/mm]



Nachweis, dass n [mm] \in \IZ [/mm] ist:

[mm] \bruch{27^{1379}-14^{1379}}{13}=\bruch{(27-14)*\summe_{i=0}^{1378}27^{1378-i}*14^{i}}{13}=\summe_{i=0}^{1378}27^{1378-i}*14^{i} [/mm]

[mm] (\summe_{i=0}^{1378}27^{1378-i}*14^{i}) \in \IZ [/mm]

Somit ist  13 | [mm] (27^{1379}-14^{1379}) [/mm]


Ist das so (jetzt) richtig?


-----------------------------------------------------------


Mein voheriger Lösungsansatz war folgender (Vom Prof. als falsch befunden worden, da die 2. Zeile nicht zur 3. Zeile Äquivalent ist (verstehe nicht warum?) und auch weil in der 3. Zeile das "n" nicht mehr vorkommt):

13 | [mm] (27^{1379}-14^{1379}) [/mm]

[mm] \gdw \bruch{27^{1379}-14^{1379}}{13}=n [/mm]    mit n [mm] \in \IZ [/mm]    (2. Zeile)

[mm] \gdw \bruch{27^{1379}-14^{1379}}{13}=\bruch{(27-14)*\summe_{i=0}^{1378}27^{1378-i}*14^{i}}{13} [/mm]   (3. Zeile)

[mm] \gdw \bruch{(27-14)*\summe_{i=0}^{1378}27^{1378-i}*14^{i}}{13}=n [/mm] mit [mm] n\in \IZ [/mm]





        
Bezug
Teilbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Mo 21.01.2013
Autor: abakus


> Zeigen Sie:
>  
> 13 | [mm](27^{1379}-14^{1379})[/mm]
>  
> Benutzen Sie:
> [mm]x^{n}-y^{n}=(x-y)*\summe_{i=0}^{n-1}x^{n-1-i}*y^{i}[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Mein Lösungsvorschlag:
>  
>
> 13 | [mm](27^{1379}-14^{1379})[/mm]
>
> [mm]\gdw \bruch{27^{1379}-14^{1379}}{13}=n[/mm]    mit n [mm]\in \IZ[/mm]
>  
>
>
> Nachweis, dass n [mm]\in \IZ[/mm] ist:
>  
> [mm]\bruch{27^{1379}-14^{1379}}{13}=\bruch{(27-14)*\summe_{i=0}^{1378}x^{1378-i}*y^{i}}{13}=\summe_{i=0}^{1378}x^{1378-i}*y^{i}[/mm]
>  
> [mm](\summe_{i=0}^{1378}x^{1378-i}*y^{i}) \in \IZ[/mm]
>  
> Somit ist  13 | [mm](27^{1379}-14^{1379})[/mm]
>
>
> Ist das so (jetzt) richtig?
>
>
> -----------------------------------------------------------
>  
>
> Mein voheriger Lösungsansatz war folgender (Vom Prof. als
> falsch befunden worden, da die 2. Zeile nicht zur 3. Zeile
> Äquivalent ist (verstehe nicht warum?) und auch weil in
> der 3. Zeile das "n" nicht mehr vorkommt):
>  
> 13 | [mm](27^{1379}-14^{1379})[/mm]
>  
> [mm]\gdw \bruch{27^{1379}-14^{1379}}{13}=n[/mm]    mit n [mm]\in \IZ[/mm]    
> (2. Zeile)
>  
> [mm]\gdw \bruch{27^{1379}-14^{1379}}{13}=\bruch{(27-14)*\summe_{i=0}^{1378}x^{1378-i}*y^{i}}{13}[/mm]

Hallo,
deine Verbindung zwischen 2. und 3. Zeile lautet:
"der eine Bruch ist gleich n" GENAU DANN WENN "der eine Bruch gleich dem anderen Bruch".
Das stimmt nicht. Deine beiden Brüche in Zeile 3 sind IMMER gleich.

Gruß Abakus

>   (3. Zeile)
>  
> [mm]\gdw \bruch{(27-14)*\summe_{i=0}^{1378}x^{1378-i}*y^{i}}{13}=n[/mm]
> mit [mm]n\in \IZ[/mm]
>  
>
>
>  


Bezug
                
Bezug
Teilbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mo 21.01.2013
Autor: KlickKlack


> Hallo,
> deine Verbindung zwischen 2. und 3. Zeile lautet:
>  "der eine Bruch ist gleich n" GENAU DANN WENN "der eine
> Bruch gleich dem anderen Bruch".
>  Das stimmt nicht. Deine beiden Brüche in Zeile 3 sind
> IMMER gleich.
>  
> Gruß Abakus

Hallo Abakus,

Stimmt. Dann würde ich so vorgehen, wie bei meiner 1. Lösung im Startpost. Ist diese denn richtig?


Bezug
                        
Bezug
Teilbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Mo 21.01.2013
Autor: fred97


>
> > Hallo,
> > deine Verbindung zwischen 2. und 3. Zeile lautet:
>  >  "der eine Bruch ist gleich n" GENAU DANN WENN "der eine
> > Bruch gleich dem anderen Bruch".
>  >  Das stimmt nicht. Deine beiden Brüche in Zeile 3 sind
> > IMMER gleich.
>  >  
> > Gruß Abakus
>  
> Hallo Abakus,
>  
> Stimmt. Dann würde ich so vorgehen, wie bei meiner 1.
> Lösung im Startpost. Ist diese denn richtig?

Ja

FRED

>  


Bezug
                                
Bezug
Teilbarkeit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Mo 21.01.2013
Autor: KlickKlack

Alles klar, danke euch beiden!

Bezug
                        
Bezug
Teilbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Mo 21.01.2013
Autor: Fulla

Hallo KlickKlack!

Wenn du noch dazuschreibst, was x und y ist(oder noch besser: die entsprechenden Zahlen einstetzt), passt's.


Lieben Gruß,
Fulla


Bezug
                                
Bezug
Teilbarkeit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:36 Mo 21.01.2013
Autor: KlickKlack


> Wenn du noch dazuschreibst, was x und y ist(oder noch
> besser: die entsprechenden Zahlen einstetzt), passt's.

Ahh da habe ich das einsetzen vergessen, habs editiert im Startpost, danke nochmals ;)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de