www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Teilbarkeiten
Teilbarkeiten < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeiten: Weiß einer warum?
Status: (Frage) beantwortet Status 
Datum: 12:11 So 16.03.2008
Autor: DaMazen

Aufgabe
Bsp.:

für alle a,b,c [mm] \varepsilon \IZ [/mm]          a|b und b|c  =>  a|c  (Transitivität)

Soweit ist das klar. Jetzt die Frage:

Es gilt für alle ganzen Zahlen. Zudieser Zahlenmenge gehört auch die 0.

Heißt ja dann z.B. auch 0|8 und 8|16 =>  0|16  , was meiner Meinung nichtgeht, da man kein x findet, das die Gleichung 0*x=16 erfüllt.

Ich habe dazu in einem Buch nachgelesen, dass gilt 0|0 da die Gleichung 0*x=0 lösbar ist. Doch 0|8 ????

Sollte dies nicht gehen, wäre ja die Gleichung a|b und b|c  => a|c für [mm] \IZ [/mm] nicht lösbar, sondern nur für [mm] \IZ [/mm] ohne Null.

Ich hoffe ich konnte mein Problem hier ausreichen skizieren, damit mir vieleicht einer weiterhelfen kann?



        
Bezug
Teilbarkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 So 16.03.2008
Autor: Zneques

Hallo,

Da 8|16 gilt wäre deine Aussage :
Aus 0|8 folgt 0|16 , was auch völlig verständlich ist, da
0*x=8 [mm] \Rightarrow [/mm] 0*(2*x)=2*(0*x)=2*8=16

Wieso zweifelst du an 0|16, gehst aber felsenfest von 0|8 aus ?
Ist doch beides genau das selbe Problem.

Wenn nun 0|8 nicht gilt, dann wird aus dieser Folgerung :
(falsch und richtig) [mm] \Rightarrow [/mm] falsch

Das ist eine legitime logische Folgerung.

Ciao.

Bezug
                
Bezug
Teilbarkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 So 16.03.2008
Autor: DaMazen

Naja ich gehe nicht felsenfest von 0|8 aus,sondern laut Literatur nur von 0|0.... ob 0|8 gilt, warja auch von mir in Frage gestellt, sollte 0|8 gelten, dann ist mir auch 0|16 klar, da dann sogar 0|x  mit x aus Z gilt.

Bezug
                        
Bezug
Teilbarkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 So 16.03.2008
Autor: angela.h.b.

Hallo,

in den reellen Zahlen gilt 0|8 nicht.

Sonst gäbe es ja ein [mm] x\in \IR [/mm] mit 0*x=8 <==>  0=8.

Gruß v. Angela

Bezug
                                
Bezug
Teilbarkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:06 So 16.03.2008
Autor: DaMazen

Also dann logischerweise auch nicht bei den ganzen Zahlen!?
Also nur der Einzelfall 0|0?

heißt also die Aussage:

Für alle a,b,c Element der ganzen Zahlen gilt

a|b und b|c => a|c falsch, da es eben für die 0 nicht geht und ist im Buch falsch?

Bezug
                                        
Bezug
Teilbarkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 So 16.03.2008
Autor: angela.h.b.


> Also dann logischerweise auch nicht bei den ganzen
> Zahlen!?
>  Also nur der Einzelfall 0|0?

Ja.
0 ist Teiler von 0, denn es ist ja 0*5=0.

> heißt also die Aussage:
>  
> Für alle a,b,c Element der ganzen Zahlen gilt
>  
> a|b und b|c => a|c falsch, da es eben für die 0 nicht geht
> und ist im Buch falsch?

Nein, die Aussage ist nicht falsch.

Wenn es richtig ist (!), daß a|b und b|c ,
dann (!)  stimmt es auch, daß a|c.

Das kann man doch leicht zeigen:

Sei a Teler von b und b Teiler von c, dann gibt es x,y mit b=ax und c=by.

==> c=axy=a(xy), also ist a Teiler von c.

Gruß v. Angela





Bezug
                                                
Bezug
Teilbarkeiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 So 16.03.2008
Autor: DaMazen

Ahhhhhhh, jetzt geht ein Licht auf... a|b und b|c gilt ja... das hatte ichnicht bedacht. Danke für die Mühe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de