www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Teilbarkeitsprobleme
Teilbarkeitsprobleme < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeitsprobleme: Verstehe Beispiel nicht...
Status: (Frage) beantwortet Status 
Datum: 21:23 So 24.09.2006
Autor: Burli

Aufgabe
Beispiel: Für alle natürlichen Zahlen n ist 8 ein Teiler von [mm] 9^n-1 [/mm]

Verankerung: n=1
[mm] 9^1 [/mm] -1=8=8*1
--> 8 ist ein Teiler von [mm] 9^1-1 [/mm]

Vererbung: von n auf n+1
Annahme: 8 ist ein Teiler von [mm] 9^n-1 [/mm]

Zu zeigen:
8 ist ein Teiler von [mm] 9^{n+1}-1 [/mm]

Nachweis:
[mm] 9^{n+1}=9^n*9-1 [/mm]
               [mm] =9*(9^n-1)+9-1 [/mm]
               =9*8m+8
               =8*(9m+1)
               [mm] =8*m_{1} [/mm]

Hallo
also wir sollen dieses Bsp. verstehen um es in der nächsten Stunde vor dem Kurs zu erklären...
Also der Nachweis ist mein Problem, wäre nett wenn ihn einer von euch mal gut erklären könnte. Ich versteh den Text aus dem Buch nicht.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Teilbarkeitsprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:31 So 24.09.2006
Autor: Bastiane

Hallo!

> Beispiel: Für alle natürlichen Zahlen n ist 8 ein Teiler
> von [mm]9^n-1[/mm]
>  
> Verankerung: n=1
>  [mm]9^1[/mm] -1=8=8*1
>  --> 8 ist ein Teiler von [mm]9^1-1[/mm]

>  
> Vererbung: von n auf n+1
>  Annahme: 8 ist ein Teiler von [mm]9^n-1[/mm]
>  
> Zu zeigen:
>  8 ist ein Teiler von [mm]9^{n+1}-1[/mm]
>  
> Nachweis:
>  [mm]9^{n+1}=9^n*9-1[/mm]
>                 [mm]=9*(9^n-1)+9-1[/mm]
>                 =9*8m+8
>                 =8*(9m+1)
>                 [mm]=8*m_{1}[/mm]
>  Hallo
>  also wir sollen dieses Bsp. verstehen um es in der
> nächsten Stunde vor dem Kurs zu erklären...
>  Also der Nachweis ist mein Problem, wäre nett wenn ihn
> einer von euch mal gut erklären könnte. Ich versteh den
> Text aus dem Buch nicht.

Was genau verstehst du denn daran nicht? Kennst du denn allgemein das Prinzip der Vollständigen Induktion?

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Teilbarkeitsprobleme: Beitrag
Status: (Frage) beantwortet Status 
Datum: 21:38 So 24.09.2006
Autor: Burli

Doch kenn ich, dazu hab ich auch eine Aufgabe eben gelöst
aber wie komm ich auf den zweiten Schritt im Nachweis?

aber da hakt es bei mir

Bezug
        
Bezug
Teilbarkeitsprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 So 24.09.2006
Autor: Bastiane

Hallo!

> Beispiel: Für alle natürlichen Zahlen n ist 8 ein Teiler
> von [mm]9^n-1[/mm]
>  
> Verankerung: n=1
>  [mm]9^1[/mm] -1=8=8*1
>  --> 8 ist ein Teiler von [mm]9^1-1[/mm]

>  
> Vererbung: von n auf n+1
>  Annahme: 8 ist ein Teiler von [mm]9^n-1[/mm]
>  
> Zu zeigen:
>  8 ist ein Teiler von [mm]9^{n+1}-1[/mm]
>  
> Nachweis:
>  [mm]9^{n+1}=9^n*9-1[/mm]
>                 [mm]=9*(9^n-1)+9-1[/mm]
>                 =9*8m+8
>                 =8*(9m+1)
>                 [mm]=8*m_{1}[/mm]

Den zweiten Schritt? Also auf [mm] $=9*(9^n-1)+9-1$. [/mm] Wie man darauf kommt - keine Ahnung, muss man sich wohl überlegen, dass man irgendwas rausbekommt, mit dem man weiterkommt. Aber dass das das Gleiche ist, ist doch klar, oder? Wenn du es ausmultiplizierst steht da: [mm] $9*9^n-9+9-1$ [/mm] und das ist das Gleiche wie [mm] $9^{n+1}-1$ [/mm] und das stand ja vorher da.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Teilbarkeitsprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 So 24.09.2006
Autor: informix

Hallo Burli und [willkommenmr],
> Beispiel: Für alle natürlichen Zahlen n ist 8 ein Teiler
> von [mm]9^n-1[/mm]
>  
> Verankerung: n=1
>  [mm]9^1[/mm] -1=8=8*1
>  --> 8 ist ein Teiler von [mm]9^1-1[/mm]

>  
> Vererbung: von n auf n+1
>  Annahme: 8 ist ein Teiler von [mm]9^n-1[/mm]
>  
> Zu zeigen:
>  8 ist ein Teiler von [mm]9^{n+1}-1[/mm]

zu zeigen: [mm]9^{n+1}-1[/mm] kann man als ein Vielfaches von 8 schreiben.

>  
> Nachweis:
>  [mm]9^{n+1}=9^n*9-1[/mm]

besser/richtiger: [mm]9^{n+1}-1=9^n*9-1[/mm]
$= 9* [mm] 9^n \red{-9} (\green{+9} [/mm]  -1)$
[mm]=9*\underbrace{(9^n \red{-1})}_{= 8*m \mbox{ wegen Annahme oben}} +\underbrace{(\green{9}-1)}_{=8}[/mm]

>                 =9*8*m+8
>                 =8*(9*m+1)
>                 [mm]=8*m_{1}[/mm]
>  Hallo
>  also wir sollen dieses Bsp. verstehen um es in der
> nächsten Stunde vor dem Kurs zu erklären...
>  Also der Nachweis ist mein Problem, wäre nett wenn ihn
> einer von euch mal gut erklären könnte. Ich versteh den
> Text aus dem Buch nicht.

Ich habe mal zum besseren Verständnis ein paar Zwischenschritte eingefügt.

Jetzt klar(er)?

Gruß informix



Bezug
        
Bezug
Teilbarkeitsprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 Mo 25.09.2006
Autor: jasko

Also,beim Prinzip der vollständigen Induktion geht man vollgendermaßen vor:

1)Für die zu beweisende Gleichung (die meistens über n gegeben ist - in deinem Fall: [mm]9^n-1[/mm] setzt man im ersten Schritt für n = 1 ein und überprüft ob die Annahme stimmt,also in deinem Fall:

[mm]9^1-1 = 9-1=8 \Rightarrow [/mm] 8 ist ein Teiler von 8 [mm] \Rightarrow T[/mm]!

2)Im zweiten Schritt kommt die Annahme das die zu beweisende Gleichung tatsechlich für n stimmt,also: 8 ist ein Teiler von [mm] 9^n-1[/mm]

3)Im dritten Schritt kommt dann der Nachweis das die zu beweisende Gleichung auch für n = n+1 stimmt,also in deinem Fall:

          $ [mm] 9^{n+1}=9^n\cdot{}9-1 [/mm] $
                         $ [mm] =9\cdot{}(9^n-1)+9-1 [/mm] $
                            =9*8m+8
                            =8*(9m+1)
                         $ [mm] =8\cdot{}m_{1} [/mm] $,
womit bewiesen wäre das 8 ein Teiler von  [mm]9^n-1[/mm] für alle [mm] n\in\IN [/mm] ist!

Konkret zu deiner Frage:im 3. Schritt gillt es die,nach dem einsetzen von   n = n+1,erhaltene Gleichung(in deinem Fall: [mm]9^{n+1}-1[/mm])so umzuformen das darin die Anfangsgleichung vorkommt(in deinem Fall:       ( [mm]9^n-1[/mm])weil du für sie im 2. Schritt schon angenommen hast das sie mit 8 teilbar ist und demnach auch anstelle dieser gleichung dann 8m(steht für eine dürch 8 teilbare Zahl)schreiben kannst.In deinem Fall wurde im 2. Schritt des Nachweises einfach nur eine 9 zu der Gleichung adiert und von ihr wieder subtrahiert (kann man machen weil sich dadurch in der Gleichung nichts ändert),also es wurde folgendes gemacht:

[mm]9^n\cdot{}9-1 = 9^n\cdot{}9-1+9-9=9\cdot{}(9^n-1)+9-1[/mm].

Der Rest des Nachweises dürfte dann klar sein!            



Bezug
                
Bezug
Teilbarkeitsprobleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Di 26.09.2006
Autor: Burli

danke für die vielen antworten..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de