Teilraumtopologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:03 Mo 03.09.2018 | Autor: | Maxi1995 |
Hallo,
angenommen, ich betrachte eine Menge U, die bzgl. der durch die euklidische Norm induzierten Teilraumtopologie auf einem metrischen Raum Y Y-offen ist. Sei zudem ein weiterer metrischer Raum X gegeben, mit $Y [mm] \subset [/mm] X$. Wenn ich jetzt einen Diffeomorphismus [mm] $\varphi: [/mm] Y [mm] \rightarrow [/mm] X$ habe, d.h. die Funktion ist bijektiv und die (Umkehr-)Funktion ist stetig diffbar., ist dann [mm] $\varphi(Y)$ [/mm] offen?
|
|
|
|
Hallo Maxi,
> Hallo,
> angenommen, ich betrachte eine Menge U, die bzgl. der
> durch die euklidische Norm induzierten Teilraumtopologie
> auf einem metrischen Raum Y Y-offen ist.
> Sei zudem ein
> weiterer metrischer Raum X gegeben, mit [mm]Y \subset X[/mm]. Wenn
> ich jetzt einen Diffeomorphismus [mm]\varphi: Y \rightarrow X[/mm]
> habe, d.h. die Funktion ist bijektiv und die
> (Umkehr-)Funktion ist stetig diffbar., ist dann [mm]\varphi(Y)[/mm]
> offen?
Ich sehe nicht, wo die Menge $U$ Verwendung findet. Meintest du evtl. [mm] $\varphi(U)$ [/mm] statt [mm] $\varphi(Y)$ [/mm] in deiner Frage?
Ganz allgemein:
Du hast zwei metrische Räume $X,Y$ mit $Y [mm] \subset [/mm] X$. Die durch die Metrik von $X$ induzierte Topologie vererbt sich als Teilraumtopologie auf $Y$.
Eine Teilmenge $U [mm] \subset [/mm] Y$ ist sogleich offen genau dann, wenn es eine offene Teilmenge [mm] $\Omega \subset [/mm] X$ gibt so dass $ U = Y [mm] \cap \Omega$ [/mm] gilt.
Für einen Homöomorphismus [mm] $\varphi: [/mm] Y [mm] \to [/mm] X$ zwischen top. Räumen gilt insbesondere, dass [mm] $\varphi$ [/mm] offen ist (Äquivalent dazu dass [mm] $\varphi^{-1}$ [/mm] stetig ist).
D.h. für jede in $Y$ offene Teilmenge [mm] $U\subset [/mm] Y$ gilt, dass [mm] $\varphi(U)$ [/mm] offen ist in $X$. Also ist insbesondere [mm] $\varphi(Y)$ [/mm] offen in $X$.
Beantwortet das deine Frage?
LG,
ChopSuey
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:04 Sa 15.09.2018 | Autor: | Maxi1995 |
Hallo,
ja das beantwortet meine Frage, vielen Dank.
|
|
|
|