www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Temperierte Distributionen
Temperierte Distributionen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Temperierte Distributionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:52 Sa 27.01.2007
Autor: k3nny

Aufgabe
Zeige, dass das lineare Funktional u,
[mm] (u,\alpha) [/mm] = [mm] \integral_{-unendlich}^{unendlich}{dx e^{x}sin(e^{x}) \alpha(x)} [/mm]
eine temperierte Distribution definiert.  

Hallo zusammen,
wir haben jetzt neu mit Distributionen angefangen und ich muss sagen ich tu mich schon etwas schwer damit. Meine Frage ist nun: Wie genau kann ich dass denn zeigen?

Mein Ansatz war ich nehme mir einfach irgendeine (womit es schon "unmathematisch" anfängt ^^) schnell abfallende Testfunktion [mm] \alpha [/mm] wie z.B. [mm] e^{-(x^2/2)} [/mm] und lasse die dann auf den "Rest" wirken und zeige, dass das Integral < unendlich ist.

FALLS das der richtige Weg sein sollte dann tun sich mir 2 Fragen auf

1. Kann man sich einfach IRGENDEINE Testfunktion nehmen loslegen oder muss man sowas allgemeiner beweisen?

2. Wie würde ich das Integral auswerten bzw. zeigen dass es < unendlich ist?

Sorry dass ich selbst so wenig Ansatz bzw. Ahnung davon hab, aber weder Skript noch unzählige Internetseiten konnten mir bis jetzt verständlich erklären was ich zu tun habe! Wenn mir jemand sagen könnte wie ich korrekt vorzugehen hab bei so einer Aufgabe wär das echt super ^^

Schon mal danke im Vorraus

k3nny

        
Bezug
Temperierte Distributionen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Mo 29.01.2007
Autor: Volker2

Hallo Kenny,

da [mm] \alpha [/mm] eine Testfunktion ist, weißt D, dass für jedes $N$ und $l$

[mm] \sup_{x\in\IR,\ 0\leq k \leq l}|\alpha^{(k)}(x)(1+x^2)^N| [/mm]

existiert. Damit $u$ eine temperierte Distribution ist, mußt Du eine Abschätzung der
Form
$$
[mm] |(u,\alpha)|\leq \text{Konstante}\cdot \sup_{x\in\IR,\ 0\leq k \leq l}|\alpha^{(k)}(x)(1+x^2)^n| [/mm]
$$
finden, wobei k und n von [mm] \alpha [/mm] unabhängig sein müssen. Versuche es mal mit partieller Integration etwa so:

[mm] |(u,\alpha)|=|\int_{-\infty}^\infty (-\cos(e^x))' \alpha(x) [/mm] dx|=
[mm] |\int_{-\infty}^\infty \cos(e^x) \alpha'(x)dx |=|\int_{-\infty}^\infty \frac{\cos(e^x)}{1+x^2} \alpha'(x)(1+x^2)dx |\leq\left(\int_{-\infty}^\infty \frac{dx}{1+x^2}dx\right) \sup_{x\in\IR}| \alpha'(x)(1+x^2)| [/mm]
Volker

Bezug
                
Bezug
Temperierte Distributionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:50 Mo 29.01.2007
Autor: k3nny

Hallo Volker, vielen dank für deine Antwort schonmal ... Ich hab noch ein paar Fragen

zuerst zu:
$ [mm] \sup_{x\in\IR,\ 0\leq k \leq l}|\alpha^{(k)}(x)(1+x^2)^N| [/mm] $

$ [mm] |(u,\alpha)|\leq \text{Konstante}\cdot \sup_{x\in\IR,\ 0\leq k \leq l}|\alpha^{(k)}(x)(1+x^2)^n| [/mm] $

was genau ist l in der beziehung .. einfach eine beliebige obere grenze größer als  k? und wie ist n bzw. N zu verstehen, liegt das ebenfalls im Intervall [mm] 0\leq [/mm] t [mm] \leq [/mm] l? könnte man also schreiben 0 [mm] \leq [/mm] t,n [mm] \leq [/mm] l ? In dem Beispiel bzw der Lösung, die du unten wählst, wäre t=n=1 seh ich das richtig? ;)

Dann Frage 2 zu

wobei k und n von $ [mm] \alpha [/mm] $ unabhängig sein müssen.

Unabhängig von $ [mm] \alpha [/mm] $ ,heisst dass soviel wie dass $ [mm] \alpha [/mm] $ dann z.B. unendlich oft differenzierbar sein muss?

Dann noch Frage 3

[mm] |\int_{-\infty}^\infty \frac{\cos(e^x)}{1+x^2} \alpha'(x)(1+x^2)dx |\leq\left(\int_{-\infty}^\infty \frac{dx}{1+x^2}dx\right) \sup_{x\in\IR}| \alpha'(x)(1+x^2)| [/mm] $

bis zur [mm] \leq [/mm] abschätzung ist es perfekt verständlich für mich aber dann ... du schätzt dann den $ [mm] \cos(e^x) [/mm] $ durch 1 ab da der cos maximal 1 wird (beim betrag) oder? nur wieso kannst du jetzt $ [mm] \alpha'(x)(1+x^2)dx [/mm] $ in der ungleichung durch $ [mm] \sup_{x\in\IR}| \alpha'(x)(1+x^2)| [/mm]  ersetzen und vor allem aus dem Integral herausziehen? irgendwie peil ich das noch nicht so ganz ;)

naja nichtsdestotrotz hast du mir schon viel weitergeholfen, danke dafür und es wäre nett wenn du dir die Fragen nochma anschaun könntest ;)

k3nny

Bezug
                        
Bezug
Temperierte Distributionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Mo 29.01.2007
Autor: Volker2

Hallo,

l ist eine natürliche Zahl und k durchläuft alle nat. Zahlen zwischen 0 und l. Es soll natürlich n=N sein (Tipfehler!). k und n haben nichts miteinander zu tun.


> In dem  Beispiel bzw der Lösung, die du unten wählst, wäre t=n=1 (1)
> seh ich das richtig?

Ja. Also k=n=1.

> Unabhängig von [mm]\alpha[/mm] ,heisst dass soviel wie dass [mm]\alpha[/mm]
> dann z.B. unendlich oft differenzierbar sein muss?

Du setzt ja nur [mm] \alpha's [/mm] aus dem Schwartzraum ein. Die sind alle [mm] C^\infty [/mm] und fallen samt ihren Ableitungen schneller als jedes Polynom. Unabhägig heißt, dass weder k noch n noch die Konstante von [mm] \alpha [/mm] abhängen sollen, d.h. die Abschätzung nur unter der Voraussetzung gilt, dass [mm] \alpha [/mm] eine Schwartzfunktion ist.

> Dann noch Frage 3
>  
> [mm]|\int_{-\infty}^\infty \frac{\cos(e^x)}{1+x^2} \alpha'(x)(1+x^2)dx |\leq\left(\int_{-\infty}^\infty \frac{dx}{1+x^2}dx\right) \sup_{x\in\IR}| \alpha'(x)(1+x^2)|[/mm]
> $
>  
> bis zur [mm]\leq[/mm] abschätzung ist es perfekt verständlich für
> mich aber dann ... du schätzt dann den $ [mm]\cos(e^x)[/mm] $ durch
> 1 ab da der cos maximal 1 wird (beim betrag) oder? nur
> wieso kannst du jetzt $ [mm]\alpha'(x)(1+x^2)dx[/mm] $ in der
> ungleichung durch $ [mm]\sup_{x\in\IR}| \alpha'(x)(1+x^2)|[/mm]  
> ersetzen und vor allem aus dem Integral herausziehen?
> irgendwie peil ich das noch nicht so ganz ;)

Genau, ich benutze die Abschätzung

[mm] |\int_a^b f(x)g(x)dx|\leq \int_a^b|f(x)|dx \max_{y\in [a,b]}|g(y)| [/mm]

und [mm] |cos(e^x)|\leq [/mm] 1. Um das sauber aufzuschreiben solltest Du noch die Definition des uneigentlichen Integrals verwenden.

Volker

Bezug
                                
Bezug
Temperierte Distributionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:38 Mo 29.01.2007
Autor: k3nny

Super, ich glaube damit hab ichs dann verstanden, danke für die Zeit die du dir genommen hast ;)

k3nny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de