www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Tensorprodukt von VR
Tensorprodukt von VR < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tensorprodukt von VR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Mi 24.11.2010
Autor: Lippel

Aufgabe
Seien V,W zwei endlichdimensionale [mm] $\IC$-Vektorräume [/mm] und $ f [mm] \in [/mm] End(v), g [mm] \in [/mm] End(W)$.
Besimmen Sie die Eigenwerte von
$f [mm] \otimes [/mm] g: V [mm] \otimes [/mm] W [mm] \to [/mm] V [mm] \otimes [/mm] W, v [mm] \otimes [/mm] w [mm] \mapsto [/mm] f(v) [mm] \otimes [/mm] g(w)$
in Abhängigkeit derer von f und g.

Hallo,

ich denke ich kann die Eigenwerte von $f [mm] \otimes [/mm] g$ in Abhängigkeit derer von $f$ und $g$ angeben, schaffe es aber nicht zu zeigen, dass es keine weiteren geben kann. Meine Überelgungen, soweit wie ich gekommen bin:

Seien [mm] $\alpha, \beta \in \IC$ [/mm] Eigenwerte von f bzw. g.
[mm] $\Rightarrow \exists [/mm] v [mm] \in [/mm] V, w [mm] \in [/mm] W: f(v) = [mm] \alpha [/mm] v, g(w) = [mm] \beta [/mm] w$
[mm] $\Rightarrow$ [/mm] für $v [mm] \otimes [/mm] w [mm] \in [/mm] V [mm] \otimes [/mm] W$ gilt dann: $(f [mm] \otimes [/mm] g)(v [mm] \otimes [/mm] w) = f(v) [mm] \otimes [/mm] g(w) = [mm] (\alpha [/mm] v) [mm] \otimes (\beta [/mm] w) = [mm] \alpha \beta [/mm] (v [mm] \otimes [/mm] w)$
[mm] $\Rightarrow \alpha\beta$ [/mm] ist Eigenwert von $f [mm] \otimes [/mm] g$, denn $(v [mm] \otimes [/mm] w)$ ist nicht der Nullvektor und somit Eigenvektor von $f [mm] \otimes [/mm] g$ zum Eigenwert [mm] $\alpha\beta$. [/mm]
Stimmt das soweit? Bin leider sehr unsicher mit dem Tensorprodukt.

Wie kann ich nun zeigen, dass es außer den aus den Eigenwerten von f und g hergeleiteten, keine weiteren Eigenwerte geben kann?
Was ich noch nicht explizit gebraucht habe ist die Endlichdimensionalität der Vektorräume V und W (oder fließt das oben irgendwo ein?). D.h. ich kann Basen angeben und so auch in Anbhängigkeit dieser Basen eine Basis von $V [mm] \otimes [/mm] W$ konstruieren. Hilft mir das vielleicht weiter?

Vielen Dank für eure Hilfe.

LG Lippel



        
Bezug
Tensorprodukt von VR: Antwort
Status: (Antwort) fertig Status 
Datum: 02:10 Do 25.11.2010
Autor: felixf

Moin!

> Seien V,W zwei endlichdimensionale [mm]\IC[/mm]-Vektorräume und [mm]f \in End(v), g \in End(W)[/mm].
>  
> Besimmen Sie die Eigenwerte von
>  [mm]f \otimes g: V \otimes W \to V \otimes W, v \otimes w \mapsto f(v) \otimes g(w)[/mm]
>  
> in Abhängigkeit derer von f und g.
>  
> ich denke ich kann die Eigenwerte von [mm]f \otimes g[/mm] in
> Abhängigkeit derer von [mm]f[/mm] und [mm]g[/mm] angeben, schaffe es aber
> nicht zu zeigen, dass es keine weiteren geben kann.

Das ist spontan gesagt auch das schwierigste daran :-)

> Meine Überelgungen, soweit wie ich gekommen bin:
>  
> Seien [mm]\alpha, \beta \in \IC[/mm] Eigenwerte von f bzw. g.
>  [mm]\Rightarrow \exists v \in V, w \in W: f(v) = \alpha v, g(w) = \beta w[/mm]
>  
> [mm]\Rightarrow[/mm] für [mm]v \otimes w \in V \otimes W[/mm] gilt dann: [mm](f \otimes g)(v \otimes w) = f(v) \otimes g(w) = (\alpha v) \otimes (\beta w) = \alpha \beta (v \otimes w)[/mm]
>  
> [mm]\Rightarrow \alpha\beta[/mm] ist Eigenwert von [mm]f \otimes g[/mm], denn
> [mm](v \otimes w)[/mm] ist nicht der Nullvektor und somit
> Eigenvektor von [mm]f \otimes g[/mm] zum Eigenwert [mm]\alpha\beta[/mm].
>  Stimmt das soweit? Bin leider sehr unsicher mit dem
> Tensorprodukt.

Ja, das stimmt alles.

> Wie kann ich nun zeigen, dass es außer den aus den
> Eigenwerten von f und g hergeleiteten, keine weiteren
> Eigenwerte geben kann?
>  Was ich noch nicht explizit gebraucht habe ist die
> Endlichdimensionalität der Vektorräume V und W (oder
> fließt das oben irgendwo ein?).

Die Endlichdimensionalitaet ist wichtig.

> D.h. ich kann Basen
> angeben und so auch in Anbhängigkeit dieser Basen eine
> Basis von [mm]V \otimes W[/mm] konstruieren. Hilft mir das
> vielleicht weiter?

Ja, damit kann man es recht schnell sehen.

Und zwar kannst du ueber [mm] $\IC$ [/mm] ja []trigonalisieren.

Also waehl Basen $v = [mm] (v_1, \dots, v_n)$ [/mm] von $V$ und $w = [mm] (w_1, \dots, w_m)$ [/mm] von $W$ so, dass $f$ bzgl $v$ durch eine obere Dreiecksmatrix und $g$ bzgl $w$ durch eine obere Dreiecksmatrix repraesentiert wird.

Die Eigenwerte von $f$ und $g$ stehen dann auf der Diagonalen.

Wenn du jetzt die Basis [mm] $v_i \otimes w_j$, [/mm] $1 [mm] \le [/mm] i [mm] \le [/mm] n$, $1 [mm] \le [/mm] j [mm] \le [/mm] m$ von $V [mm] \otimes [/mm] W$ anschaust, ist die Matrix von $f [mm] \otimes [/mm] g$ gegeben durch das []Kroneckerprodukt der Matrizen von $f$ und $g$.

Und das Kroneckerprodukt von zwei oberen Dreiecksmatrizen ist wieder eine obere Dreiecksmatrix, und auf der Diagonalen stehen genau [mm] $\lambda_i \cdot \mu_j$, [/mm] falls [mm] $\lambda_1, \dots, \lambda_n$ [/mm] die Diagonalelemente der Matrix von $f$ und [mm] $\mu_1, \dots, \mu_m$ [/mm] die Diagonalelemente der Matrix von $g$ sind.

Wenn du das genau ausformulierst, hast du somit alles auf einmal gezeigt ;-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de