www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Term berechnen- mittelwertsatz
Term berechnen- mittelwertsatz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Term berechnen- mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Di 29.01.2008
Autor: die_conny

Aufgabe
Berechnen Sie den Term [mm] \wurzel{1850} [/mm] hinreichend genau unter Verwendung des Mittelwertsatzes in der Form :

f(x+h) = f(x) + h* f'(x+ [mm] \nu [/mm] * h) mit h>0  

Ich bräuchte bei dieser Aufgabe nochmal Hilfe. Soweit bin ich bis jetzt gekommen:

Also da [mm] \wurzel{1850} [/mm] gesucht ist, gilt:

f(x)= [mm] \wurzel{x} [/mm]

-> f'(x) = 1/(2* [mm] \wurzel{x} [/mm]

nun gilt:

[mm] \wurzel{1849} [/mm] = 43

also soll nun gelten:

x= 1849 und h=1

laut der angegebenen formel für den mittelwertsatz gilt nun:

f'(1849 + [mm] \nu) [/mm] = [mm] (\nu [/mm] = 1) 1 / (2* [mm] \wurzel{1850}) [/mm]  

f'(1849 + [mm] \nu) [/mm] = [mm] (\nu [/mm] = 0) 1/ (2* [mm] \wurzel{1849}) [/mm] = 1/86 = 0,011628

nun könnte ich ja laut der angegebenen gleichung für den MWS schlussfolgern:

[mm] \forall \nu \in [/mm] (0,1):

1/ (2* [mm] \wurzel{1850}) [/mm] + [mm] \wurzel{1849} [/mm] < [mm] \wurzel{1850} [/mm] < 1/86 + [mm] \wurzel{1849} [/mm]

und daraus könnte ich nun [mm] \wurzel{1850} [/mm] gut abschätzen.

aber dazu müsste ich den term 1/ (2* [mm] \wurzel{1850}) [/mm]  wie oben bereits blau gekennzeichnet, ebenfalls durch kommastellen abschätzen. nur dazu darf ich ja  [mm] \wurzel{1850} [/mm] nicht einfach benutzen.
ich müsste also den term 1/ (2* [mm] \wurzel{1850}) [/mm]  irgendwie umstellen, sodass ich eine abschätzung auf eben eine komazahl hinbekomme, nur ich weiß leider nicht wie.
könnte mir da viell. jemand helfen?

tut mir leid, dass die frage so kurzfristig gestellt wurde, aber mir ist der fehler erst vorhin aufgefallen...

der rest der aufgabe müsste stimmen.

vielen dank im voraus, die_conny

        
Bezug
Term berechnen- mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Di 29.01.2008
Autor: rainerS

Hallo!

> Berechnen Sie den Term [mm]\wurzel{1850}[/mm] hinreichend genau
> unter Verwendung des Mittelwertsatzes in der Form :
>  
> f(x+h) = f(x) + h* f'(x+ [mm]\nu[/mm] * h) mit h>0
> Ich bräuchte bei dieser Aufgabe nochmal Hilfe. Soweit bin
> ich bis jetzt gekommen:
>  
> Also da [mm]\wurzel{1850}[/mm] gesucht ist, gilt:
>  
> f(x)= [mm]\wurzel{x}[/mm]
>  
> -> f'(x) = 1/(2* [mm]\wurzel{x}[/mm]
>  
> nun gilt:
>  
> [mm]\wurzel{1849}[/mm] = 43
>
> also soll nun gelten:
>  
> x= 1849 und h=1
>  
> laut der angegebenen formel für den mittelwertsatz gilt
> nun:
>  
> f'(1849 + [mm]\nu)[/mm] = [mm](\nu[/mm] = 1) 1 / (2* [mm]\wurzel{1850})[/mm]  [/blue]
>
> f'(1849 + [mm]\nu)[/mm] = [mm](\nu[/mm] = 0) 1/ (2* [mm]\wurzel{1849})[/mm] = 1/86 =
> 0,011628
>
> nun könnte ich ja laut der angegebenen gleichung für den
> MWS schlussfolgern:
>
> [mm]\forall \nu \in[/mm] (0,1):
>
> 1/ (2* [mm]\wurzel{1850})[/mm] + [mm]\wurzel{1849}[/mm] < [mm]\wurzel{1850}[/mm] <
> 1/86 + [mm]\wurzel{1849}[/mm]
>
> und daraus könnte ich nun [mm]\wurzel{1850}[/mm] gut abschätzen.
>
> aber dazu müsste ich den term 1/ (2* [mm]\wurzel{1850})[/mm]  wie
> oben bereits blau gekennzeichnet, ebenfalls durch
> kommastellen abschätzen. nur dazu darf ich ja  
> [mm]\wurzel{1850}[/mm] nicht einfach benutzen.
> ich müsste also den term 1/ (2* [mm]\wurzel{1850})[/mm]  irgendwie
> umstellen, sodass ich eine abschätzung auf eben eine
> komazahl hinbekomme, nur ich weiß leider nicht wie.
> könnte mir da viell. jemand helfen?
>
> tut mir leid, dass die frage so kurzfristig gestellt wurde,
> aber mir ist der fehler erst vorhin aufgefallen...

Tipp: aus [mm]\wurzel{1850} < 1/86 + \wurzel{1849}[/mm] folgt

[mm] \bruch{1}{\wurzel{1850}} > \bruch{1}{1/86 + \wurzel{1849}}[/mm]

Damit kannst du die Wurzel von beiden Seiten "einsperren".

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de