www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Terme der Entwicklung
Terme der Entwicklung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Terme der Entwicklung: Wie geht das?
Status: (Frage) beantwortet Status 
Datum: 03:40 Sa 12.02.2011
Autor: Ragnaroek

Aufgabe
1. Berechnen Sie den fünften Term der Entwicklung
[mm] (\bruch{2}{3}*x^\bruch{1}{2}-\bruch{1}{2x})^6 [/mm]
2. Berechnen Sie den zehnten Term der Entwicklung
[mm] (\bruch{27a^2}{b^3}+\bruch{b^2}{6a^4})^{12} [/mm]

Hallo,

meine Frage ist schlicht - wie geht das?
Ich dachte zuerst, okay - fünfter Term der entwicklung - setze für x halt 5 ein und rechnest das aus...
Was passiert, nächste Aufgabe gleichen Typs und zack, mist.. da steht a und b. Jetzt hab ich mein Mathebuch hier durchgekrault - nix, ich weiß nichtmal wo ich genau ansetzen soll, weil Terme gibts ja überall, dieses Mathewort für so vieles.. Hat jemand ne Idee? ...^^


Grüße
Ragna

        
Bezug
Terme der Entwicklung: binomischer Lehrsatz
Status: (Antwort) fertig Status 
Datum: 04:15 Sa 12.02.2011
Autor: Loddar

Hallo Ragna!


Verwende den []binomischen Lehrsatz.


Gruß
Loddar


Bezug
                
Bezug
Terme der Entwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:41 Sa 12.02.2011
Autor: Ragnaroek

Guten Tag.

Okay, also das sieht doch schon mal sehr gut aus.
Nun verstehe ich nur noch nicht so genau was es mit dem sog. Entwicklungskoeffizienten auf sich hat. Bilden, klar - kein Problem, aber check nicht so ganz wie jetzt hier zum Beispiel:
[]http://de.wikipedia.org/wiki/Binomischer_Lehrsatz (Beispiel 1 unten)
das angewendet wird.

[mm] \vektor{3 \\ 0} [/mm] wird 1
[mm] \vektor{3 \\ 1} [/mm] wird 3
[mm] \vektor{3 \\ 2} [/mm] wird auch 3..?
[mm] \vektor{3 \\ 3} [/mm] wird 1

wie darf ich das nun verstehen?

Bezug
                        
Bezug
Terme der Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Sa 12.02.2011
Autor: MathePower

Hallo Ragnaroek,

> Guten Tag.
>  
> Okay, also das sieht doch schon mal sehr gut aus.
> Nun verstehe ich nur noch nicht so genau was es mit dem
> sog. Entwicklungskoeffizienten auf sich hat. Bilden, klar -
> kein Problem, aber check nicht so ganz wie jetzt hier zum
> Beispiel:
>  
> []http://de.wikipedia.org/wiki/Binomischer_Lehrsatz
> (Beispiel 1 unten)
>  das angewendet wird.
>  
> [mm]\vektor{3 \\ 0}[/mm] wird 1
>  [mm]\vektor{3 \\ 1}[/mm] wird 3
>  [mm]\vektor{3 \\ 2}[/mm] wird auch 3..?
>  [mm]\vektor{3 \\ 3}[/mm] wird 1
>  
> wie darf ich das nun verstehen?


In diesem Artikel steht's.


Gruss
MathePower

Bezug
                
Bezug
Terme der Entwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Sa 12.02.2011
Autor: Ragnaroek

Guten Tag.

Okay, also das sieht doch schon mal sehr gut aus.
Nun verstehe ich nur noch nicht so genau was es mit dem sog. Entwicklungskoeffizienten auf sich hat. Bilden, klar - kein Problem, aber check nicht so ganz wie jetzt hier zum Beispiel:
*moment, link war fehlerhaft
[mm] (x+y)^3 [/mm]
das angewendet wird.

[mm] \vektor{3 \\ 0} [/mm] wird 1
[mm] \vektor{3 \\ 1} [/mm] wird 3
[mm] \vektor{3 \\ 2} [/mm] wird auch 3..?
[mm] \vektor{3 \\ 3} [/mm] wird 1

wie darf ich das nun verstehen?

Bezug
                        
Bezug
Terme der Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Sa 12.02.2011
Autor: MathePower

Hallo Ragnaroek,

> Guten Tag.
>  
> Okay, also das sieht doch schon mal sehr gut aus.
> Nun verstehe ich nur noch nicht so genau was es mit dem
> sog. Entwicklungskoeffizienten auf sich hat. Bilden, klar -
> kein Problem, aber check nicht so ganz wie jetzt hier zum
> Beispiel:
>  *moment, link war fehlerhaft
>  [mm](x+y)^3[/mm]
>  das angewendet wird.
>  
> [mm]\vektor{3 \\ 0}[/mm] wird 1
>  [mm]\vektor{3 \\ 1}[/mm] wird 3
>  [mm]\vektor{3 \\ 2}[/mm] wird auch 3..?


Ja, da die Binomialkoeffizienten symmetrisch sind:

[mm]\pmat{3 \\ k }=\bruch{3!}{k!*\left(3-k\right)!})=\bruch{3!}{\left(3-k\right)!}*k!)=\pmat{3 \\ 3-k }, \ k=0,1,2,3[/mm]


>  [mm]\vektor{3 \\ 3}[/mm] wird 1
>  
> wie darf ich das nun verstehen?


[mm]\pmat{3 \\ k}[/mm] ist der Koeffizient vor [mm]x^{k}*y^{3-k}[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Terme der Entwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Sa 12.02.2011
Autor: Ragnaroek

Ahh..

Nu hab ich es..

Kein Wunder, dass ich nicht drauf gekommen bin wie sowas zu lösen ist.

Danke Dir

Gruß Ragna

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de