www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Terme vereinfachen
Terme vereinfachen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Terme vereinfachen: Tipps und Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:29 Mi 26.09.2012
Autor: luna19

Hallo :)

Ich weiß nicht wie ich diesen Term richtig vereinfache:

[mm] x^{3}-1.5(c1+1)t^{2}+6c1x+1.5(c2+1)x^{2}-6c1x [/mm]


[mm] x^{3}-1.5(c1+1)x^{2}+1.5(c2+1)x^{2}+6c1x-6c2x [/mm]


[mm] x^{3}+(x^{2}(-1.5((c1+1)-(c2+1)))+x(6c1-6c2) [/mm]

[mm] x^{3}+(x^{2}(-1.5((c1-c2))+x(6c1-6c2) [/mm]

[mm] x^{3}+(x^{2}(-1.5c1+1.5c2)+x(6c1-6c2) [/mm]

[mm] x^{3}-1.5c1x^{2}+1.5c2x^{2}+6c1x-6c2x [/mm]

[mm] x^{2}(x-1.5c1+1.5c2)+x(6c1-6c2) [/mm]  

Und hier komme ich  nicht mehr weiter,ich  muss nämlich die Stammfunktion bilden:

[mm] F(x)=(\bruch{t-1,5c1+1,5c2}{3})x^{3}+(\bruch{6c1-6c2}{2})x^{2} [/mm]

[mm] (\bruch{t}{3}-\bruch{0,5c1}{3}+\bruch{0,5c2}{3})x^{3}+(\bruch{3c1}{2}-\bruch{3c2}{2})x^{2} [/mm]
                                                                              

[mm] (\bruch{t-0,5c1+0,5c2}{3})x^{3}+(\bruch{3c1-3c2}{2})x^{2} [/mm]



Danke !!!

        
Bezug
Terme vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Mi 26.09.2012
Autor: chrisno

Hallo luna19,

was man unter einer Vereinfachung eines Terms versteht, hängt davon ab, was man mit dem Term als nächstes vor hat. Eine Diskussion der Umwandlungen des ersten Terms lohnt im Moment noch nicht. Dazu musst Du erst einmal klären, ab die Umwandlung des [mm] $t^2$ [/mm] in ein [mm] $x^2$ [/mm] Absicht oder ein Schreibfehler ist. Außerdem bleibt die Frage, was soll als nächstes geschehen?

Eine gewisse Ähnlichkeit zum zweiten Term ist zu erkennen. Hängen die beiden zusammen? Wenn ja, macht es Sinn, das zu erklären und dann gehören beide auch in eine Frage. Wenn nein, dann wäre es besser, wenn Du eine zweite Frage stellst. Sonst wird es so mühsam, weil immer an zwei Baustellen in einem Text gearbeitet wird. Da muss man dann immer erklären, welchen Teil man gerade diskutiert.

Im zweiten Teil soll F(x) eine Stammfunktion sein, vermute ich.

> $ [mm] F(x)=(\bruch{t-1,5c1+1,5c2}{3})x^{3}+(\bruch{6c1-6c2}{2})x^{2} [/mm] $

Die erste Vereinfachung besteht darin, im zweiten Bruch im Zähler 2 auszuklammern und dann die 2 zu kürzen.

> $ [mm] (\bruch{t}{3}-\bruch{0,5c1}{3}+\bruch{0,5c2}{3})x^{3}+(\bruch{3c1}{2}-\bruch{3c2}{2})x^{2} [/mm] $

So funktioniert die Bruchrechnung nicht. Ich führe es für den ersten Term vor:
[mm] $\bruch{t-1,5c1+1,5c2}{3} [/mm] = [mm] \bruch{t}{3} -\bruch{1,5c1}{3} +\bruch{1,5c2}{3} [/mm] =  [mm] \bruch{t}{3} [/mm] -0,5c1 +0,5c2$

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de