Termumformung < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Aufgabe | [mm]\frac{500}{\pi*\wurzel[3]{(\frac{500}{\pi})^2}}=\frac{(\wurzel[3]{\frac{500}{\pi}})^3}{(\wurzel[3]{\frac{500}{\pi}})^2}[/mm] |
Seid gegrüßt!
Mein Problem ist, dass ich diese Termumformung nicht nachvollziehen kann. Welche Umformungsschritte wurden hier angewandt? Ich hab' es mit den Potenzregeln versucht und bin kaum weiter damit gekommen.
Zum Beispiel:
[mm]\frac{500}{\pi*\wurzel[3]{(\frac{500}{\pi})^2}}=\frac{500}{\pi*(\frac{500}{\pi})^{\frac{2}{3}}}=\frac{\frac{500}{\pi}}{(\wurzel[3]{\frac{500}{\pi}})^2}[/mm]
Wie geht es weiter?
|
|
|
|
>
> [mm]\frac{500}{\pi*\wurzel[3]{(\frac{500}{\pi})^2}}=\frac{(\wurzel[3]{\frac{500}{\pi}})^3}{(\wurzel[3]{\frac{500}{\pi}})^2}[/mm]
> Seid gegrüßt!
>
> Mein Problem ist, dass ich diese Termumformung nicht
> nachvollziehen kann. Welche Umformungsschritte wurden hier
> angewandt? Ich hab' es mit den Potenzregeln versucht und
> bin kaum weiter damit gekommen.
>
> Zum Beispiel:
>
> [mm]\frac{500}{\pi*\wurzel[3]{(\frac{500}{\pi})^2}}=\frac{500}{\pi*(\frac{500}{\pi})^{\frac{2}{3}}}=\frac{\red{\frac{500}{\pi}}}{(\wurzel[3]{\frac{500}{\pi}})^2}[/mm]
>
> Wie geht es weiter?
Es gilt doch allgemein [mm] $x=(\sqrt[3]{x})^3$ [/mm] (jedenfalls für [mm] $x\geq [/mm] 0$, falls man Wurzeln nur als für nicht-negative Radikanden definiert auffassen will - andernfalls gilt dies sogar für alle reellen Zahlen $x$). Dies wurde einfach auf den Zähler [mm] $x=\red{\frac{500}{\pi}}$ [/mm] des letzten Bruches in der obigen Umformungskette angewandt. Das heisst, es ist [mm] $\red{\frac{500}{\pi}}=\Big(\sqrt[3]{\frac{500}{\pi}}\Big)^3$.
[/mm]
Entsprechend allgemeiner gilt (für [mm] $x\geq [/mm] 0$): [mm] $x=(\sqrt[n]{x})^n$, [/mm] denn die $n$-te Wurzel aus $x$ wurde so definiert (als diejenige Zahl, deren $n$-te Potenz gleich $x$ ist).
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Do 23.08.2007 | Autor: | maximinus |
Vielen Dank für die rasche Antwort!
> Es gilt doch allgemein $ [mm] x=(\sqrt[3]{x})^3 [/mm] $
Natürlich! Daran habe ich gar nicht gedacht. Ich hatte wohl ein Brett vor dem Kopf.
Gruß
|
|
|
|
|
Hallo maximinus!
[mm]\frac{500}{\pi*\wurzel[3]{(\frac{500}{\pi})^2}}=\frac{(\wurzel[3]{\frac{500}{\pi}})^3}{(\wurzel[3]{\frac{500}{\pi}})^2}[/mm]
> Seid gegrüßt!
>
> Mein Problem ist, dass ich diese Termumformung nicht
> nachvollziehen kann. Welche Umformungsschritte wurden hier
> angewandt? Ich hab' es mit den Potenzregeln versucht und
> bin kaum weiter damit gekommen.
Also ich würde es einfach so machen:
[mm] \frac{500}{\pi*\wurzel[3]{(\frac{500}{\pi})^2}}=\frac{500}{\pi}*\frac{1}{(\frac{500}{\pi})^{\frac{2}{3}}}=(\frac{500}{\pi})^1*(\frac{500}{\pi})^{-\frac{2}{3}}=(\frac{500}{\pi})^{\frac{1}{3}}=\wurzel[3]{\frac{500}{\pi}} [/mm] was offensichtlich dasselbe ist, wie [mm] \frac{(\wurzel[3]{\frac{500}{\pi}})^3}{(\wurzel[3]{\frac{500}{\pi}})^2}
[/mm]
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:32 Do 23.08.2007 | Autor: | maximinus |
Hallo Bastiane,
Das ist ein guter Lösungsweg. Im Rechnen mit Potenzen bin ich ziemlich ungeübt (obwohl ich schon bei der Analysis angekommen bin), weswegen ich für jedes Beispiel dankbar bin. Also auch dir: vielen Dank!
Gruß
|
|
|
|