www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Termumformung
Termumformung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Termumformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Di 22.01.2008
Autor: Meier7777

Aufgabe
Beweisen sie, dass es sich um die gleiche funktion handelt:
[mm] f(x)=Larcosh(\bruch{-L}{x}) [/mm] - [mm] \wurzel{L^2-x^2} [/mm]

[mm] g(x)=\bruch{L}{2}ln(\bruch{L+\wurzel[2]{L^2 -x^2}}{L-\wurzel[2]{L^2 - x^2}}) [/mm] - [mm] \wurzel{L^2-x^2} [/mm]

Hinweis: [mm] arcoshx=ln(x+\wurzel[2]{x^2 - 1}) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,
ich habe f(x) umgeformt (hinteren term vernachlässigt, hinweis benutzt, umformung) und komme auf:

[mm] \bruch{L}{2}ln(\bruch{2L^2}{x^2}-1-\bruch{2L}{x^2}\wurzel{L^2-x^2}) [/mm]

von dort ist es -glaube ich- nicht mehr weit, aber ich bekomms nicht hin.
ich würde mich sehr über einen ansatz oder sogar die lösung freuen.

gruß fritz

        
Bezug
Termumformung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 Di 22.01.2008
Autor: schachuzipus

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Fritz,

bist du sicher, dass dort bei $f(x)$ im Argument $\frac{\red{-}L}{X}$ steht?

Wenn dort $\frac{\red{+}L}{X}$ stünde, klappt das mit der Umformung

Außerdem gilt der Tipp mit $arccosh(x)=\ln(x+\sqrt{x^2-1})$ doch nur für $x\ge 1$, oder?

Falls dort bei $f(x)$ $\frac{L}{X}$ im Argument steht, klappt das so:

Forme zuerst mal den lästigen Wurzelausdruck in $g(x)$ um:

Erweitern mit $L\red{+}\sqrt{L^2-X^2}$ liefert: (jeweils ohne den hinteren Term)

$g(x)=\frac{L}{2}\cdot{}\ln\left(\frac{\left[L+\sqrt{L^2-X^2}\right]^2}{L^2-(L^2-X^2)}\right)=\frac{L}{2}\cdot{}\ln\left(\left[\frac{L+\sqrt{L^2-X^2}}{X}\right]^2\right)$

$=2\cdot{}\frac{L}{2}\cdot{}\ln\left(\frac{L+\sqrt{L^2-X^2}}{X}\right)$ $\qquad$ nach dem Logarithmusgesetz $\log\left(a^b)=b\cdot{}\log(a)$

$=\blue{L\cdot{}\ln\left(\frac{L+\sqrt{L^2-X^2}}{X}\right)}$


Das nun mal mit $f(x)$ vergleichen und für $L\cdot{}arccosh\left(\frac{L}{X}\right)$ den Tipp einsetzen:

$L\cdot{}arccosh\left(\frac{L}{X}\right)=L\cdot{}\ln\left(\frac{L}{X}+\sqrt{\frac{L^2}{X^2}-1}\right)=L\cdot{}\ln\left(\frac{L}{X}+\sqrt{\frac{L^2-X^2}{X^2}}\right)$

$=\blue{L\cdot{}\ln\left(\frac{L+\sqrt{L^2-X^2}}{X}\right)}$


Die Biester sind also gleich - bleibt die Frage nach dem Vorzeichen ... [kopfkratz3]

Gruß

schachuzipus

Bezug
                
Bezug
Termumformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:31 Mi 23.01.2008
Autor: Meier7777

hi,
erstmal danke.

also das "-" steht da ganz sicher. allerdings ist x, ja auch als negativ definiert.
hilft das?

gruß fritz

Bezug
                        
Bezug
Termumformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:37 Mi 23.01.2008
Autor: Meier7777

ups,das habe ich wohl vergessen anzugeben:
x [mm] \in [/mm] [-L;0[

Bezug
                        
Bezug
Termumformung: analog
Status: (Antwort) fertig Status 
Datum: 09:49 Mi 23.01.2008
Autor: Roadrunner

Hallo Fritz!


Ich habe es jetzt nicht im Detail überprüft. Aber für negative $x_$ und dem erwähnten Minuszeichen hebt sich das alles gegenseitig auf.

Formal kann man hier ja $z \ := \ -x$ definieren und dann Schachuzipus' Weg gehen.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de