www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Testkonstruktion m/o Varianz
Testkonstruktion m/o Varianz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Testkonstruktion m/o Varianz: Frage
Status: (Frage) beantwortet Status 
Datum: 20:19 Fr 25.02.2005
Autor: Jens.St

Hallo,

ich bin grade dabei eine Übungsklausur (Mathematik für Ingenieure) zu rechnen. Allerdings hake ich bei folgender Aufgabe:

Der Schadstoffgehalt eines Produktes soll unter 25mg/l lhiegen. Messungen  haben die Werte 30mg/l, 40mg/l, 20mg/l, 20mg/l und 40mg/l ergeben. Wir gehen davon aus, dass die gemessenen Schadstoffwerte unabhängig voneinander und normalverteilt mit Mittelwert mu sind. Skizzieren Sie allgemein (also mit N Messergebnissen x1, ..., xN) wie man einen Test zum Niveau [mm] $\alpha$ [/mm] = 0, 1 für die Hypothese [mm] $\mu$ [/mm] <= 25mg/l konstruiert,

a) falls Sie wissen, dass die Varianz [mm] $\sigma^2 [/mm] = 10$ ist.
b) falls Sie keine Kenntnis über die Varianz haben.
Wenden Sie beide Verfahren auf die obigen Messwerte an.

Das Konkrete Problem bei dieser Aufgabe habe ich damit das Quantil $q_alpha$ zu bestimmen (Um entscheiden zu können ob die Hypthese zu verwerfen ist oder nicht):

[mm] $c_{\alpha} [/mm] = [mm] \vartheta_0 [/mm] + [mm] \frac{\sqrt(\sigma_0^2)}{\sqrt(n)}q_\alpha$ [/mm]

Schonmal vielen Dank für jeden Denkanstoß! Wünsche noch ein schönes Wochende!


Gruß Jens

P.S. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Die Tex - Funktion in diesem Forum ist echt cool!!!


        
Bezug
Testkonstruktion m/o Varianz: Idee
Status: (Antwort) fertig Status 
Datum: 00:23 So 27.02.2005
Autor: KeinEinstein

Du testest einseitig, dass heißt [mm] \latex H_0: \mu \le \latex [/mm] 25mg/l gegen [mm] \latex H_1: \mu [/mm] > [mm] \latex [/mm] 25mg/l .

Bei a) ist die Varianz bekannt, daher verwendet man den Gauss-Test, bzw. berechnet mit der Normalverteilung die Quantile. [mm] \latex q_{\alpha} \latex [/mm] ist bei dir [mm] \latex q_{\alpha} =\Phi^{-1}(1-\alpha)=\Phi^{-1}(0.9)=1.28 \latex. [/mm]

Bei b) ist die Varianz unbekannt, daher wird sie aus der Stichprobe geschätzt (Mittelwert). Anschließend verwendest du den t-Test, bzw. berechnest das Quantil mit der t-Verteilung (n-1=5-1 Freiheitsgrade, da du 5 Werte gegeben hast). Mit einer Formelsammlung erhälst du  [mm] \latex q_{\alpha} =t^{-1}_{n=4}(0.9)=1.533 \latex [/mm]

Ich hoffe, ich konnte dir weiterhelfen. Lies am Besten nochmal unter t-Test und Gauß-Test nach, die beiden Tests verwendet man bei normalverteilten Daten und unbekannter bzw. bekannter Varianz.

Viel Erfolg!
KeinEinstein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de